Abstract
We propose a Lagrangian for the low-energy theory that resides at the (1 + 1)-dimensional intersection of N semi-infinite M2-branes ending orthogonally on M M5-branes in \( {\mathbb{R}}^{1,2}\times {\mathbb{C}}^4/{\mathbb{Z}}_k \) (for arbitrary positive integers N, M, k). We formulate this theory as a 2d boundary theory with explicit \( \mathcal{N}=\left(1,\;1\right) \) supersymmetry that contains two superfields in the bi-fundamental representation of U(N )×U(M ) interacting with the (2+1)-dimensional U(N ) k × U(N )−k ABJM Chern-Simons-matter theory in the bulk. We postulate that the boundary theory exhibits in the deep infrared supersymmetry enhancement to \( \mathcal{N}=\left(4,\;2\right) \), or \( \mathcal{N}=\left(4,\;4\right) \) depending on the value of k. Arguments in favor of the proposal follow from the study of the open string theory of a U-dual type IIB Hanany-Witten setup. To formulate the bulk-boundary interactions special care is taken to incorporate all the expected boundary effects on gauge symmetry, supersymmetry, and other global symmetries.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
P.S. Howe, N.D. Lambert and P.C. West, The selfdual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [INSPIRE].
V. Niarchos and K. Siampos, M 2-M 5 blackfold funnels, JHEP 06 (2012) 175 [arXiv:1205.1535] [INSPIRE].
R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, World-volume effective theory for higher-dimensional black holes, Phys. Rev. Lett. 102 (2009) 191301 [arXiv:0902.0427] [INSPIRE].
R. Emparan, T. Harmark, V. Niarchos and N.A. Obers, Essentials of blackfold dynamics, JHEP 03 (2010) 063 [arXiv:0910.1601] [INSPIRE].
V. Niarchos and K. Siampos, Entropy of the self-dual string soliton, JHEP 07 (2012) 134 [arXiv:1206.2935] [INSPIRE].
V. Niarchos and K. Siampos, The black M 2-M 5 ring intersection spins, PoS Corfu2012 (2013) 088 [arXiv:1302.0854] [INSPIRE].
D.S. Berman and J.A. Harvey, The self-dual string and anomalies in the M 5-brane, JHEP 11 (2004) 015 [hep-th/0408198] [INSPIRE].
S. Bolognesi and K. Lee, 1/4 BPS string junctions and N 3 problem in 6-dim (2, 0) superconformal theories, Phys. Rev. D 84 (2011) 126018 [arXiv:1105.5073] [INSPIRE].
O. Lunin, Strings ending on branes from supergravity, JHEP 09 (2007) 093 [arXiv:0706.3396] [INSPIRE].
C. Bachas, E. D’Hoker, J. Estes and D. Krym, M-theory solutions invariant under D(2, 1; γ) ⊕ D(2, 1; γ), Fortsch. Phys. 62 (2014) 207 [arXiv:1312.5477].
A. Basu and J.A. Harvey, The M 2-M 5 brane system and a generalized Nahm’s equation, Nucl. Phys. B 713 (2005) 136 [hep-th/0412310] [INSPIRE].
O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
D.S. Berman, M.J. Perry, E. Sezgin and D.C. Thompson, Boundary conditions for interacting membranes, JHEP 04 (2010) 025 [arXiv:0912.3504] [INSPIRE].
D.S. Berman and D.C. Thompson, Membranes with a boundary, Nucl. Phys. B 820 (2009) 503 [arXiv:0904.0241] [INSPIRE].
D.V. Belyaev and P. van Nieuwenhuizen, Rigid supersymmetry with boundaries, JHEP 04 (2008) 008 [arXiv:0801.2377] [INSPIRE].
C.-S. Chu and D.J. Smith, Multiple self-dual strings on M 5-branes, JHEP 01 (2010) 001 [arXiv:0909.2333] [INSPIRE].
M. Faizal and D.J. Smith, Supersymmetric Chern-Simons theory in presence of a boundary, Phys. Rev. D 85 (2012) 105007 [arXiv:1112.6070] [INSPIRE].
B. Haghighat, A. Iqbal, C. Kozçaz, G. Lockhart and C. Vafa, M-strings, Commun. Math. Phys. 334 (2015) 779 [arXiv:1305.6322] [INSPIRE].
B. Haghighat, C. Kozcaz, G. Lockhart and C. Vafa, Orbifolds of M-strings, Phys. Rev. D 89 (2014) 046003 [arXiv:1310.1185] [INSPIRE].
J. Kim, S. Kim, K. Lee, J. Park and C. Vafa, Elliptic genus of E-strings, arXiv:1411.2324 [INSPIRE].
K. Hosomichi and S. Lee, Self-dual strings and 2D SYM, JHEP 01 (2015) 076 [arXiv:1406.1802] [INSPIRE].
J. Gomis and B. Le Floch, M 2-brane surface operators and gauge theory dualities in Toda, arXiv:1407.1852 [INSPIRE].
A. Armoni and V. Niarchos, Defects in Chern-Simons theory, gauged WZW models on the brane and level-rank duality, JHEP 07 (2015) 062 [arXiv:1505.02916] [INSPIRE].
D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [INSPIRE].
T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p, q)-five-brane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].
O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP 10 (1999) 036 [hep-th/9908075] [INSPIRE].
D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-Matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [INSPIRE].
S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].
E.A. Ivanov, Chern-Simons matter systems with manifest N = 2 supersymmetry, Phys. Lett. B 268 (1991) 203 [INSPIRE].
A. Karch and L. Randall, Localized gravity in string theory, Phys. Rev. Lett. 87 (2001) 061601 [hep-th/0105108] [INSPIRE].
O. DeWolfe, D.Z. Freedman and H. Ooguri, Holography and defect conformal field theories, Phys. Rev. D 66 (2002) 025009 [hep-th/0111135] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1509.07676
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Niarchos, V. A Lagrangian for self-dual strings. J. High Energ. Phys. 2015, 1–19 (2015). https://doi.org/10.1007/JHEP12(2015)060
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/JHEP12(2015)060