Skip to main content

Asymptotic safety guaranteed

A preprint version of the article is available at arXiv.

Abstract

We study the ultraviolet behaviour of four-dimensional quantum field theories involving non-abelian gauge fields, fermions and scalars in the Veneziano limit. In a regime where asymptotic freedom is lost, we explain how the three types of fields cooperate to develop fully interacting ultraviolet fixed points, strictly controlled by perturbation theory. Extensions towards strong coupling and beyond the large-N limit are discussed.

References

  1. K.G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture, Phys. Rev. B 4 (1971) 3174 [INSPIRE].

    ADS  Google Scholar 

  2. K.G. Wilson, Renormalization group and critical phenomena. 2. Phase space cell analysis of critical behavior, Phys. Rev. B 4 (1971) 3184 [INSPIRE].

    ADS  Google Scholar 

  3. D.J. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].

    ADS  Google Scholar 

  4. H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].

    ADS  Google Scholar 

  5. D.J.E. Callaway, Triviality pursuit: can elementary scalar particles exist?, Phys. Rept. 167 (1988) 241 [INSPIRE].

    ADS  Google Scholar 

  6. S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., (1979), pg. 790 [INSPIRE].

  7. D.F. Litim, Renormalisation group and the Planck scale, Phil. Trans. Roy. Soc. Lond. A 369 (2011) 2759 [arXiv:1102.4624] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. D.F. Litim, On fixed points of quantum gravity, AIP Conf. Proc. 841 (2006) 322 [hep-th/0606044] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. M. Niedermaier, The asymptotic safety scenario in quantum gravity: an introduction, Class. Quant. Grav. 24 (2007) R171 [gr-qc/0610018] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. M. Niedermaier and M. Reuter, The asymptotic safety scenario in quantum gravity, Living Rev. Rel. 9 (2006) 5 [INSPIRE].

    Google Scholar 

  11. R. Percacci, Asymptotic safety, arXiv:0709.3851 [INSPIRE].

  12. D.F. Litim, Fixed points of quantum gravity and the renormalisation group, PoS(QG-Ph)024 [arXiv:0810.3675] [INSPIRE].

  13. M. Reuter and F. Saueressig, Quantum Einstein gravity, New J. Phys. 14 (2012) 055022 [arXiv:1202.2274] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. D.I. Kazakov, Ultraviolet fixed points in gauge and SUSY field theories in extra dimensions, JHEP 03 (2003) 020 [hep-th/0209100] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. H. Gies, J. Jaeckel and C. Wetterich, Towards a renormalizable standard model without fundamental Higgs scalar, Phys. Rev. D 69 (2004) 105008 [hep-ph/0312034] [INSPIRE].

    ADS  Google Scholar 

  16. T.R. Morris, Renormalizable extra-dimensional models, JHEP 01 (2005) 002 [hep-ph/0410142] [INSPIRE].

    ADS  Google Scholar 

  17. P. Fischer and D.F. Litim, Fixed points of quantum gravity in extra dimensions, Phys. Lett. B 638 (2006) 497 [hep-th/0602203] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. P. Fischer and D.F. Litim, Fixed points of quantum gravity in higher dimensions, AIP Conf. Proc. 861 (2006) 336 [hep-th/0606135] [INSPIRE].

    ADS  Google Scholar 

  19. D.I. Kazakov and G.S. Vartanov, Renormalizable 1/N f expansion for field theories in extra dimensions, JHEP 06 (2007) 081 [arXiv:0707.2564] [INSPIRE].

    ADS  Google Scholar 

  20. O. Zanusso, L. Zambelli, G.P. Vacca and R. Percacci, Gravitational corrections to Yukawa systems, Phys. Lett. B 689 (2010) 90 [arXiv:0904.0938] [INSPIRE].

    ADS  Google Scholar 

  21. H. Gies, S. Rechenberger and M.M. Scherer, Towards an asymptotic-safety scenario for chiral Yukawa systems, Eur. Phys. J. C 66 (2010) 403 [arXiv:0907.0327] [INSPIRE].

    ADS  Google Scholar 

  22. J.-E. Daum, U. Harst and M. Reuter, Running gauge coupling in asymptotically safe quantum gravity, JHEP 01 (2010) 084 [arXiv:0910.4938] [INSPIRE].

    ADS  Google Scholar 

  23. G.P. Vacca and O. Zanusso, Asymptotic safety in Einstein gravity and scalar-fermion matter, Phys. Rev. Lett. 105 (2010) 231601 [arXiv:1009.1735] [INSPIRE].

    ADS  Google Scholar 

  24. X. Calmet, Asymptotically safe weak interactions, Mod. Phys. Lett. A 26 (2011) 1571 [arXiv:1012.5529] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. S. Folkerts, D.F. Litim and J.M. Pawlowski, Asymptotic freedom of Yang-Mills theory with gravity, Phys. Lett. B 709 (2012) 234 [arXiv:1101.5552] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. F. Bazzocchi, M. Fabbrichesi, R. Percacci, A. Tonero and L. Vecchi, Fermions and Goldstone bosons in an asymptotically safe model, Phys. Lett. B 705 (2011) 388 [arXiv:1105.1968] [INSPIRE].

    ADS  Google Scholar 

  27. H. Gies, S. Rechenberger, M.M. Scherer and L. Zambelli, An asymptotic safety scenario for gauged chiral Higgs-Yukawa models, Eur. Phys. J. C 73 (2013) 2652 [arXiv:1306.6508] [INSPIRE].

    ADS  Google Scholar 

  28. O. Antipin, M. Mojaza and F. Sannino, Conformal extensions of the standard model with Veltman conditions, Phys. Rev. D 89 (2014) 085015 [arXiv:1310.0957] [INSPIRE].

    ADS  Google Scholar 

  29. P. Doná, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum gravity, Phys. Rev. D 89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].

    ADS  Google Scholar 

  30. A. Bonanno and M. Reuter, Cosmology of the Planck era from a renormalization group for quantum gravity, Phys. Rev. D 65 (2002) 043508 [hep-th/0106133] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. K.A. Meissner and H. Nicolai, Conformal symmetry and the standard model, Phys. Lett. B 648 (2007) 312 [hep-th/0612165] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. R. Foot, A. Kobakhidze, K.L. McDonald and R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory, Phys. Rev. D 77 (2008) 035006 [arXiv:0709.2750] [INSPIRE].

    ADS  Google Scholar 

  33. J. Hewett and T. Rizzo, Collider signals of gravitational fixed points, JHEP 12 (2007) 009 [arXiv:0707.3182] [INSPIRE].

    ADS  Google Scholar 

  34. D.F. Litim and T. Plehn, Signatures of gravitational fixed points at the LHC, Phys. Rev. Lett. 100 (2008) 131301 [arXiv:0707.3983] [INSPIRE].

    ADS  Google Scholar 

  35. M. Shaposhnikov and D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem, Phys. Lett. B 671 (2009) 162 [arXiv:0809.3406] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. M. Shaposhnikov and D. Zenhausern, Scale invariance, unimodular gravity and dark energy, Phys. Lett. B 671 (2009) 187 [arXiv:0809.3395] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

    ADS  Google Scholar 

  38. S. Weinberg, Asymptotically safe inflation, Phys. Rev. D 81 (2010) 083535 [arXiv:0911.3165] [INSPIRE].

    ADS  Google Scholar 

  39. G. ’t Hooft, Probing the small distance structure of canonical quantum gravity using the conformal group, arXiv:1009.0669 [INSPIRE].

  40. E. Gerwick, D. Litim and T. Plehn, Asymptotic safety and Kaluza-Klein gravitons at the LHC, Phys. Rev. D 83 (2011) 084048 [arXiv:1101.5548] [INSPIRE].

    ADS  Google Scholar 

  41. E. Gerwick, Asymptotically safe gravitons in electroweak precision physics, Eur. Phys. J. C 71 (2011) 1676 [arXiv:1012.1118] [INSPIRE].

    ADS  Google Scholar 

  42. M. Hindmarsh, D. Litim and C. Rahmede, Asymptotically safe cosmology, JCAP 07 (2011) 019 [arXiv:1101.5401] [INSPIRE].

    ADS  Google Scholar 

  43. T. Hur and P. Ko, Scale invariant extension of the standard model with strongly interacting hidden sector, Phys. Rev. Lett. 106 (2011) 141802 [arXiv:1103.2571] [INSPIRE].

    ADS  Google Scholar 

  44. B. Dobrich and A. Eichhorn, Can we see quantum gravity? Photons in the asymptotic-safety scenario, JHEP 06 (2012) 156 [arXiv:1203.6366] [INSPIRE].

    ADS  Google Scholar 

  45. G. Marques Tavares, M. Schmaltz and W. Skiba, Higgs mass naturalness and scale invariance in the UV, Phys. Rev. D 89 (2014) 015009 [arXiv:1308.0025] [INSPIRE].

    ADS  Google Scholar 

  46. C. Tamarit, Running couplings with a vanishing scale anomaly, JHEP 12 (2013) 098 [arXiv:1309.0913] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  47. S. Abel and A. Mariotti, Novel Higgs potentials from gauge mediation of exact scale breaking, arXiv:1312.5335 [INSPIRE].

  48. O. Antipin, J. Krog, M. Mojaza and F. Sannino, Stable Eχtensions with(out) gravity, Nucl. Phys. B 886 (2014) 125 [arXiv:1311.1092] [INSPIRE].

    ADS  Google Scholar 

  49. M. Heikinheimo, A. Racioppi, M. Raidal, C. Spethmann and K. Tuominen, Physical naturalness and dynamical breaking of classical scale invariance, Mod. Phys. Lett. A 29 (2014) 1450077 [arXiv:1304.7006] [INSPIRE].

    ADS  Google Scholar 

  50. E. Gabrielli et al., Towards completing the standard model: vacuum stability, EWSB and dark matter, Phys. Rev. D 89 (2014) 015017 [arXiv:1309.6632] [INSPIRE].

    ADS  Google Scholar 

  51. M. Holthausen, J. Kubo, K.S. Lim and M. Lindner, Electroweak and conformal symmetry breaking by a strongly coupled hidden sector, JHEP 12 (2013) 076 [arXiv:1310.4423] [INSPIRE].

    ADS  Google Scholar 

  52. G.C. Dorsch, S.J. Huber and J.M. No, Cosmological signatures of a UV-conformal standard model, Phys. Rev. Lett. 113 (2014) 121801 [arXiv:1403.5583] [INSPIRE].

    ADS  Google Scholar 

  53. A. Eichhorn and M.M. Scherer, The Planck scale, the Higgs mass and scalar dark matter, Phys. Rev. D 90 (2014) 025023 [arXiv:1404.5962] [INSPIRE].

    ADS  Google Scholar 

  54. K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic safety, arXiv:1301.4191 [INSPIRE].

  55. R. Gastmans, R. Kallosh and C. Truffin, Quantum gravity near two-dimensions, Nucl. Phys. B 133 (1978) 417 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  56. S.M. Christensen and M.J. Duff, Quantum gravity in two + ϵ dimensions, Phys. Lett. B 79 (1978) 213 [INSPIRE].

    ADS  Google Scholar 

  57. M.E. Peskin, Critical point behavior of the Wilson loop, Phys. Lett. B 94 (1980) 161 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  58. K. Gawedzki and A. Kupiainen, Exact renormalization for the Gross-Neveu model of quantum fields, Phys. Rev. Lett. 54 (1985) 2191 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  59. K. Gawedzki and A. Kupiainen, Renormalizing the nonrenormalizable, Phys. Rev. Lett. 55 (1985) 363 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  60. K.G. Wilson and J.B. Kogut, The renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].

    ADS  Google Scholar 

  61. E. Tomboulis, 1/N expansion and renormalization in quantum gravity, Phys. Lett. B 70 (1977) 361 [INSPIRE].

    ADS  Google Scholar 

  62. E. Tomboulis, Renormalizability and asymptotic freedom in quantum gravity, Phys. Lett. B 97 (1980) 77 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  63. L. Smolin, A fixed point for quantum gravity, Nucl. Phys. B 208 (1982) 439 [INSPIRE].

    ADS  Google Scholar 

  64. C. de Calan, P.A. Faria da Veiga, J. Magnen and R. Seneor, Constructing the three-dimensional Gross-Neveu model with a large number of flavor components, Phys. Rev. Lett. 66 (1991) 3233 [INSPIRE].

    ADS  Google Scholar 

  65. O. Antipin, M. Mojaza, C. Pica and F. Sannino, Magnetic fixed points and emergent supersymmetry, JHEP 06 (2013) 037 [arXiv:1105.1510] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  66. O. Antipin, M. Mojaza and F. Sannino, Light dilaton at fixed points and ultra light scale super Yang-Mills, Phys. Lett. B 712 (2012) 119 [arXiv:1107.2932] [INSPIRE].

    ADS  Google Scholar 

  67. O. Antipin, S. Di Chiara, M. Mojaza, E. Mølgaard and F. Sannino, A perturbative realization of Miransky scaling, Phys. Rev. D 86 (2012) 085009 [arXiv:1205.6157] [INSPIRE].

    ADS  Google Scholar 

  68. O. Antipin, M. Gillioz, E. Mølgaard and F. Sannino, The a theorem for gauge-Yukawa theories beyond Banks-Zaks fixed point, Phys. Rev. D 87 (2013) 125017 [arXiv:1303.1525] [INSPIRE].

    ADS  Google Scholar 

  69. G. Veneziano, U(1) without instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  70. T. Banks and A. Zaks, On the phase structure of vector-like gauge theories with massless fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].

    ADS  Google Scholar 

  71. H. Kawai, Y. Kitazawa and M. Ninomiya, Scaling exponents in quantum gravity near two-dimensions, Nucl. Phys. B 393 (1993) 280 [hep-th/9206081] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  72. H. Kawai, Y. Kitazawa and M. Ninomiya, Ultraviolet stable fixed point and scaling relations in (2 + ϵ)-dimensional quantum gravity, Nucl. Phys. B 404 (1993) 684 [hep-th/9303123] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  73. D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301 [hep-th/0312114] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  74. A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  75. D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

    ADS  Google Scholar 

  76. I. Donkin and J.M. Pawlowski, The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows, arXiv:1203.4207 [INSPIRE].

  77. N. Christiansen, D.F. Litim, J.M. Pawlowski and A. Rodigast, Fixed points and infrared completion of quantum gravity, Phys. Lett. B 728 (2014) 114 [arXiv:1209.4038] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  78. N. Christiansen, B. Knorr, J.M. Pawlowski and A. Rodigast, Global flows in quantum gravity, arXiv:1403.1232 [INSPIRE].

  79. D. Becker and M. Reuter, En route to background independence: broken split-symmetry and how to restore it with bi-metric average actions, Annals Phys. 350 (2014) 225 [arXiv:1404.4537] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  80. D.J. Gross and A. Neveu, Dynamical symmetry breaking in asymptotically free field theories, Phys. Rev. D 10 (1974) 3235 [INSPIRE].

    ADS  Google Scholar 

  81. Y. Kikukawa and K. Yamawaki, Ultraviolet fixed point structure of renormalizable four fermion theory in less than four-dimensions, Phys. Lett. B 234 (1990) 497 [INSPIRE].

    ADS  Google Scholar 

  82. H.-J. He, Y.-P. Kuang, Q. Wang and Y.-P. Yi, Effective potential, renormalization and nontrivial ultraviolet fixed point in D-dimensional four fermion theories (2 < D < 4) to order 1/N in 1/N expansion, Phys. Rev. D 45 (1992) 4610 [INSPIRE].

    ADS  Google Scholar 

  83. S. Hands, A. Kocic and J.B. Kogut, Four Fermi theories in fewer than four-dimensions, Annals Phys. 224 (1993) 29 [hep-lat/9208022] [INSPIRE].

    ADS  Google Scholar 

  84. J. Braun, H. Gies and D.D. Scherer, Asymptotic safety: a simple example, Phys. Rev. D 83 (2011) 085012 [arXiv:1011.1456] [INSPIRE].

    ADS  Google Scholar 

  85. H. Gies, Renormalizability of gauge theories in extra dimensions, Phys. Rev. D 68 (2003) 085015 [hep-th/0305208] [INSPIRE].

    ADS  Google Scholar 

  86. A. Pelissetto and E. Vicari, Critical phenomena and renormalization group theory, Phys. Rept. 368 (2002) 549 [cond-mat/0012164] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  87. D.F. Litim and D. Zappala, Ising exponents from the functional renormalisation group, Phys. Rev. D 83 (2011) 085009 [arXiv:1009.1948] [INSPIRE].

    ADS  Google Scholar 

  88. L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6 − ϵ dimensions, Phys. Rev. D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].

    ADS  Google Scholar 

  89. R. Percacci and G.P. Vacca, Are there scaling solutions in the O(N)-models for large-N in d > 4?, Phys. Rev. D 90 (2014) 107702 [arXiv:1405.6622] [INSPIRE].

    ADS  Google Scholar 

  90. E. Brézin and J. Zinn-Justin, Renormalization of the nonlinear σ-model in 2 + ϵ dimensions. Application to the Heisenberg ferromagnets, Phys. Rev. Lett. 36 (1976) 691 [INSPIRE].

    ADS  Google Scholar 

  91. W.A. Bardeen, B.W. Lee and R.E. Shrock, Phase transition in the nonlinear σ-model in 2 + ϵ dimensional continuum, Phys. Rev. D 14 (1976) 985 [INSPIRE].

  92. R. Percacci, Asymptotic safety in gravity and σ-models, PoS(CLAQG08)002 [arXiv:0910.4951] [INSPIRE].

  93. B.H. Wellegehausen, D. Körner and A. Wipf, Asymptotic safety on the lattice: the nonlinear O(N) σ-model, Annals Phys. 349 (2014) 374 [arXiv:1402.1851] [INSPIRE].

    ADS  Google Scholar 

  94. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].

    ADS  Google Scholar 

  95. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2. Yukawa couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].

    ADS  Google Scholar 

  96. M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].

    ADS  Google Scholar 

  97. W.E. Caswell, Asymptotic behavior of non-Abelian gauge theories to two loop order, Phys. Rev. Lett. 33 (1974) 244 [INSPIRE].

    ADS  Google Scholar 

  98. F. Sannino, Conformal dynamics for TeV physics and cosmology, Acta Phys. Polon. B 40 (2009) 3533 [arXiv:0911.0931] [INSPIRE].

    Google Scholar 

  99. J. Kuti, The Higgs particle and the lattice, PoS(LATTICE 2013)004 [INSPIRE].

  100. F.J. Dyson, Divergence of perturbation theory in quantum electrodynamics, Phys. Rev. 85 (1952) 631 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  101. E. Pomoni and L. Rastelli, Large-N field theory and AdS tachyons, JHEP 04 (2009) 020 [arXiv:0805.2261] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  102. D.F. Litim, M. Mojaza and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, in preparation.

  103. M.-X. Luo, H.-W. Wang and Y. Xiao, Two loop renormalization group equations in general gauge field theories, Phys. Rev. D 67 (2003) 065019 [hep-ph/0211440] [INSPIRE].

    ADS  Google Scholar 

  104. I. Jack and H. Osborn, Analogs for the c theorem for four-dimensional renormalizable field theories, Nucl. Phys. B 343 (1990) 647 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  105. I. Jack and H. Osborn, Constraints on RG flow for four dimensional quantum field theories, Nucl. Phys. B 883 (2014) 425 [arXiv:1312.0428] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  106. O. Antipin, M. Gillioz, J. Krog, E. Mølgaard and F. Sannino, Standard model vacuum stability and Weyl consistency conditions, JHEP 08 (2013) 034 [arXiv:1306.3234] [INSPIRE].

    ADS  Google Scholar 

  107. M. Lüscher and P. Weisz, Scaling laws and triviality bounds in the lattice ϕ 4 theory. 2. One component model in the phase with spontaneous symmetry breaking, Nucl. Phys. B 295 (1988) 65 [INSPIRE].

    ADS  Google Scholar 

  108. A. Hasenfratz, K. Jansen, C.B. Lang, T. Neuhaus and H. Yoneyama, The triviality bound of the four component ϕ 4 model, Phys. Lett. B 199 (1987) 531 [INSPIRE].

    ADS  Google Scholar 

  109. O.J. Rosten, Triviality from the exact renormalization group, JHEP 07 (2009) 019 [arXiv:0808.0082] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  110. M. Harada, Y. Kikukawa, T. Kugo and H. Nakano, Nontriviality of gauge Higgs-Yukawa system and renormalizability of gauged NJLS model, Prog. Theor. Phys. 92 (1994) 1161 [hep-ph/9407398] [INSPIRE].

    ADS  Google Scholar 

  111. J. Polchinski, Renormalization and effective Lagrangians, Nucl. Phys. B 231 (1984) 269 [INSPIRE].

    ADS  Google Scholar 

  112. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [INSPIRE].

    ADS  Google Scholar 

  113. T.R. Morris, The exact renormalization group and approximate solutions, Int. J. Mod. Phys. A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE].

    ADS  Google Scholar 

  114. D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].

    ADS  Google Scholar 

  115. C. Pica and F. Sannino, β-function and anomalous dimensions, Phys. Rev. D 83 (2011) 116001 [arXiv:1011.3832] [INSPIRE].

    ADS  Google Scholar 

  116. B. Holdom, Large-N flavor β-functions: a recap, Phys. Lett. B 694 (2010) 74 [arXiv:1006.2119] [INSPIRE].

    ADS  Google Scholar 

  117. R. Shrock, Study of possible ultraviolet zero of the β-function in gauge theories with many fermions, Phys. Rev. D 89 (2014) 045019 [arXiv:1311.5268] [INSPIRE].

    ADS  Google Scholar 

  118. A. Palanques-Mestre and P. Pascual, The 1/N f expansion of the γ and β-functions in QED, Commun. Math. Phys. 95 (1984) 277 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  119. J.A. Gracey, The QCD β-function at O(1/N f ), Phys. Lett. B 373 (1996) 178 [hep-ph/9602214] [INSPIRE].

    ADS  Google Scholar 

  120. H.W. Hamber and R.M. Williams, Quantum gravity in large dimensions, Phys. Rev. D 73 (2006) 044031 [hep-th/0512003] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  121. N. Seiberg, Electric-magnetic duality in supersymmetric non-Abelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  122. F. Sannino, QCD dual, Phys. Rev. D 80 (2009) 065011 [arXiv:0907.1364] [INSPIRE].

    ADS  Google Scholar 

  123. F. Sannino, Magnetic S-parameter, Phys. Rev. Lett. 105 (2010) 232002 [arXiv:1007.0254] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Litim.

Additional information

ArXiv ePrint: 1406.2337

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Litim, D.F., Sannino, F. Asymptotic safety guaranteed. J. High Energ. Phys. 2014, 178 (2014). https://doi.org/10.1007/JHEP12(2014)178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2014)178

Keywords

  • 1/N Expansion
  • Renormalization Group