Cycles of interactions in multi-gravity theories

Abstract

In this paper we study multi-gravity (multi-metric and multi-vielbein) theories in the presence of cycles of interactions (cycles in the so-called ‘theory graph’). It has been conjectured that in multi-metric theories such cycles lead to the introduction of a ghost-like instability, which, however, is absent in the multi-vielbein version of such theories. In this paper we answer this question in the affirmative by explicitly demonstrating the presence of the ghost in such multi-metric theories in the form of dangerous higher derivative terms in the decoupling limit Lagrangian; we also investigate the structure of interactions in the vielbein version of these theories and argue why the same ghost does not appear there. Finally we discuss the ramifications of our result on the dimensional deconstruction paradigm, which would seek an equivalence between such theories and a truncated Kaluza-Klein theory, and find that the impediment to taking the continuum limit due to a low strong-coupling scale is exacerbated by the presence of the ghost, when these theories are constructed using metrics.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  2. [2]

    M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  3. [3]

    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    C. de Rham, G. Gabadadze and A.J. Tolley, Helicity decomposition of ghost-free massive gravity, JHEP 11 (2011) 093 [arXiv:1108.4521] [INSPIRE].

    Article  Google Scholar 

  5. [5]

    C. de Rham, G. Gabadadze and A.J. Tolley, Ghost free massive gravity in the Stückelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  9. [9]

    S.F. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    S.F. Hassan, A. Schmidt-May and M. von Strauss, Proof of consistency of nonlinear massive gravity in the Stückelberg formulation, Phys. Lett. B 715 (2012) 335 [arXiv:1203.5283] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    S. Deser, M. Sandora, A. Waldron and G. Zahariade, Covariant constraints for generic massive gravity and analysis of its characteristics, Phys. Rev. D 90 (2014) 104043 [arXiv:1408.0561] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    S.F. Hassan and R.A. Rosen, Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  13. [13]

    S.F. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  14. [14]

    K. Hinterbichler and R.A. Rosen, Interacting spin-2 fields, JHEP 07 (2012) 047 [arXiv:1203.5783] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  15. [15]

    N. Tamanini, E.N. Saridakis and T.S. Koivisto, The cosmology of interacting spin-2 fields, JCAP 02 (2014) 015 [arXiv:1307.5984] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  16. [16]

    S. Deser, K. Izumi, Y.C. Ong and A. Waldron, Problems of massive gravities, arXiv:1410.2289 [INSPIRE].

  17. [17]

    C. de Rham, Massive gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].

    Google Scholar 

  18. [18]

    C. Deffayet, J. Mourad and G. Zahariade, Covariant constraints in ghost free massive gravity, JCAP 01 (2013) 032 [arXiv:1207.6338] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  19. [19]

    C. Deffayet, J. Mourad and G. Zahariade, A note onsymmetricvielbeins in bimetric, massive, perturbative and non perturbative gravities, JHEP 03 (2013) 086 [arXiv:1208.4493] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  20. [20]

    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  21. [21]

    N. Arkani-Hamed and M.D. Schwartz, Discrete gravitational dimensions, Phys. Rev. D 69 (2004) 104001 [hep-th/0302110] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. [22]

    M.D. Schwartz, Constructing gravitational dimensions, Phys. Rev. D 68 (2003) 024029 [hep-th/0303114] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    C. de Rham, A. Matas and A.J. Tolley, Deconstructing dimensions and massive gravity, Class. Quant. Grav. 31 (2014) 025004 [arXiv:1308.4136] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    C. Deffayet and J. Mourad, Multigravity from a discrete extra dimension, Phys. Lett. B 589 (2004) 48 [hep-th/0311124] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  25. [25]

    J. Noller, J.H.C. Scargill and P.G. Ferreira, Interacting spin-2 fields in the Stückelberg picture, JCAP 02 (2014) 007 [arXiv:1311.7009] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  26. [26]

    N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].

    ADS  Article  MathSciNet  MATH  Google Scholar 

  27. [27]

    J. Noller, On consistent kinetic and derivative interactions for gravitons, arXiv:1409.7692 [INSPIRE].

  28. [28]

    N.A. Ondo and A.J. Tolley, Complete decoupling limit of ghost-free massive gravity, JHEP 11 (2013) 059 [arXiv:1307.4769] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  29. [29]

    G. Gabadadze, K. Hinterbichler, D. Pirtskhalava and Y. Shang, Potential for general relativity and its geometry, Phys. Rev. D 88 (2013) 084003 [arXiv:1307.2245] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    S.F. Hassan, A. Schmidt-May and M. von Strauss, Metric formulation of ghost-free multivielbein theory, arXiv:1204.5202 [INSPIRE].

  31. [31]

    K. Nomura and J. Soda, When is multimetric gravity ghost-free?, Phys. Rev. D 86 (2012) 084052 [arXiv:1207.3637] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    A. Schmidt-May, thesis, to be published.

  33. [33]

    H.R. Afshar, E.A. Bergshoeff and W. Merbis, Interacting spin-2 fields in three dimensions, arXiv:1410.6164 [INSPIRE].

  34. [34]

    N. Khosravi, N. Rahmanpour, H.R. Sepangi and S. Shahidi, Multi-metric gravity via massive gravity, Phys. Rev. D 85 (2012) 024049 [arXiv:1111.5346] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    P.G. Ferreira, J. Noller and J. Scargill, in preparation.

  36. [36]

    C. de Rham, M. Fasiello and A.J. Tolley, Galileon duality, Phys. Lett. B 733 (2014) 46 [arXiv:1308.2702] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    M. Fasiello and A.J. Tolley, Cosmological stability bound in massive gravity and bigravity, JCAP 12 (2013) 002 [arXiv:1308.1647] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James H. C. Scargill.

Additional information

ArXiv ePrint: 1410.7774

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scargill, J.H.C., Noller, J. & Ferreira, P.G. Cycles of interactions in multi-gravity theories. J. High Energ. Phys. 2014, 160 (2014). https://doi.org/10.1007/JHEP12(2014)160

Download citation

Keywords

  • Classical Theories of Gravity
  • Field Theories in Higher Dimensions
  • SpaceTime Symmetries