Abstract
We analyze the phenomenon of fermion pairing into an effective boson associated with anomalies and the anomalous commutators of currents, bilinear in the fermion fields. In two spacetime dimensions the chiral bosonization of the Schwinger model is determined by the chiral current anomaly of massless Dirac fermions. A similar bosonized description applies to the 2D conformal trace anomaly of the fermion stress-energy tensor. For both the chiral and conformal anomalies, correlation functions involving anomalous currents, j μ5 or T μν of massless fermions exhibit a massless boson 1/k 2 pole, and the associated spectral functions obey a UV finite sum rule, becoming δ-functions in the massless limit. In both cases the corresponding effective action of the anomaly is non-local, but may be expressed in a local form by the introduction of a new bosonic field, which becomes a bona fide propagating quantum field in its own right. In both cases this is expressed in Fock space by the anomalous Schwinger commutators of currents becoming the canonical commutation relations of the corresponding boson. The boson has a Fock space operator realization as a coherent superposition of massless fermion pairs, which saturates the intermediate state sums in quantum correlation functions of fermion currents. The Casimir energy of fermions on a finite spatial interval [0, L] can also be described as a coherent scalar condensation of pairs, and the one-loop correlation function of any number n of fermion stress-energy tensors 〈TT . . . T 〉 may be expressed as a combinatoric sum of n!/2 linear tree diagrams of the scalar boson.
References
A.J. Leggett, Quantum liquids: Bose condensation and Cooper pairing in condensed-matter systems, Oxford graduate texts in mathematics, Oxford University Press, Oxford U.K. (2006).
P.C.W. Davies, S.A. Fulling and W.G. Unruh, Energy momentum tensor near an evaporating black hole, Phys. Rev. D 13 (1976) 2720 [INSPIRE].
L.S. Brown, Stress tensor trace anomaly in a gravitational metric: scalar fields, Phys. Rev. D 15 (1977) 1469 [INSPIRE].
N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge U.K. (1982).
J.S. Schwinger, Gauge invariance and mass, Phys. Rev. 125 (1962) 397 [INSPIRE].
J.S. Schwinger, Gauge invariance and mass. 2, Phys. Rev. 128 (1962) 2425 [INSPIRE].
L.S. Brown, Gauge invariance and mass in a two-dimensional model, Nuovo Cim. 29 (1963) 617.
J.H. Lowenstein and J.A. Swieca, Quantum electrodynamics in two-dimensions, Annals Phys. 68 (1971) 172 [INSPIRE].
A. Casher, J.B. Kogut and L. Susskind, Vacuum polarization and the absence of free quarks, Phys. Rev. D 10 (1974) 732 [INSPIRE].
M.B. Halpern, Equivalent-boson method and free currents in two-dimensional gauge theories, Phys. Rev. D 13 (1976) 337 [INSPIRE].
N.S. Manton, The Schwinger model and its axial anomaly, Annals Phys. 159 (1985) 220 [INSPIRE].
D. Wolf and J. Zittartz, Physics of the Schwinger model, Z. Phys. B 59 (1985) 117.
J.E. Hetrick and Y. Hosotani, QED on a circle, Phys. Rev. D 38 (1988) 2621 [INSPIRE].
R. Link, Eigenstates of the Schwinger model Hamiltonian, Phys. Rev. D 42 (1990) 2103 [INSPIRE].
I. Sachs and A. Wipf, Finite temperature Schwinger model, Helv. Phys. Acta 65 (1992) 652 [arXiv:1005.1822] [INSPIRE].
A.V. Smilga, On the fermion condensate in Schwinger model, Phys. Lett. B 278 (1992) 371 [INSPIRE].
S. Dürr and A. Wipf, Finite temperature Schwinger model with chirality breaking boundary conditions, Annals Phys. 255 (1997) 333 [hep-th/9610241] [INSPIRE].
Y. Hosotani and R. Rodriguez, Bosonized massive N flavor Schwinger model, J. Phys. A 31 (1998) 9925 [hep-th/9804205] [INSPIRE].
S. Azakov, The Schwinger model on a circle: relation between path integral and Hamiltonian approaches, Int. J. Mod. Phys. A 21 (2006) 6593 [hep-th/0511116] [INSPIRE].
A.D. Dolgov and V.I. Zakharov, On conservation of the axial current in massless electrodynamics, Nucl. Phys. B 27 (1971) 525 [INSPIRE].
J. Horejsi, Ultraviolet and infrared aspects of the axial anomaly II, Czech. J. Phys. 42 (1992) 345 [INSPIRE].
M. Giannotti and E. Mottola, The trace anomaly and massless scalar degrees of freedom in gravity, Phys. Rev. D 79 (2009) 045014 [arXiv:0812.0351] [INSPIRE].
R. Armillis, C. Corianò and L. Delle Rose, Anomaly poles as common signatures of chiral and conformal anomalies, Phys. Lett. B 682 (2009) 322 [arXiv:0909.4522] [INSPIRE].
J.S. Schwinger, Field theory commutators, Phys. Rev. Lett. 3 (1959) 296 [INSPIRE].
A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].
B. Klaiber, The Thirring model in Boulder 1967, Lectures in theoretical physics vol. Xa — Quantum Theory and Statistical Physics, New York U.S.A. (1968), pg. 141 [INSPIRE].
S.R. Coleman, The quantum sine-Gordon equation as the massive Thirring model, Phys. Rev. D 11 (1975) 2088 [INSPIRE].
S.R. Coleman, R. Jackiw and L. Susskind, Charge shielding and quark confinement in the massive Schwinger model, Annals Phys. 93 (1975) 267 [INSPIRE].
E. Witten, Instantons, the quark model and the 1/n expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].
G. Veneziano, U(1) without instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].
S. Azakov, H. Joos and A. Wipf, Witten-Veneziano relation for the Schwinger model, Phys. Lett. B 479 (2000) 245 [hep-th/0002197] [INSPIRE].
K. Johnson, γ5 invariance, Phys. Lett. 5 (1963) 253 [INSPIRE].
M. Nakahara, Geometry, topology and physics, second edition, Graduate student series in physics, Institute of Physics Publishing, Bristol U.K. (2003) [INSPIRE].
R. Jackiw, Topological investigations of quantized gauge theories, in Relativity, groups and topology, vol. II, B. DeWitt and R. Stora eds., North-Holland, Amsterdam The Netherlands (1983) [INSPIRE].
C.P. Burgess and F. Quevedo, Bosonization as duality, Nucl. Phys. B 421 (1994) 373 [hep-th/9401105] [INSPIRE].
K. Fujikawa, Path integral measure for gauge invariant fermion theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].
K. Fujikawa, Path integral for gauge theories with fermions, Phys. Rev. D 21 (1980) 2848 [Erratum ibid. D 22 (1980) 1499] [INSPIRE].
K. Fujikawa and H. Suzuki, Anomalies, local counter terms and bosonization, Phys. Rept. 398 (2004) 221 [hep-th/0305008] [INSPIRE].
R.A. Bertlmann, Anomalies in quantum field theory, International series of monographs on physics 91, Clarendon, Oxford U.K. (1996) [INSPIRE].
S.R. Coleman, More about the massive Schwinger model, Annals Phys. 101 (1976) 239 [INSPIRE].
E. Mottola, Functional integration over geometries, J. Math. Phys. 36 (1995) 2470 [hep-th/9502109] [INSPIRE].
J.E. Hetrick, Y. Hosotani and S. Iso, The massive multi-flavor Schwinger model, Phys. Lett. B 350 (1995) 92 [hep-th/9502113] [INSPIRE].
J.E. Hetrick, Y. Hosotani and S. Iso, The interplay between mass, volume, vacuum angle and chiral condensate in N flavor QED in two-dimensions, Phys. Rev. D 53 (1996) 7255 [hep-th/9510090] [INSPIRE].
E.C.G. Stueckelberg, Interaction forces in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta 11 (1938) 299 [INSPIRE].
A. Aurilia, Y. Takahashi and P.K. Townsend, The U(1) problem and the Higgs mechanism in two-dimensions and four-dimensions, Phys. Lett. B 95 (1980) 265 [INSPIRE].
C. Adam, R.A. Bertlmann and P. Hofer, Overview on the anomaly and Schwinger term in two-dimensional QED, Riv. Nuovo Cim. 16N8 (1993) 1 [INSPIRE].
D. Wolf and J. Zittartz, Bosons and fermions in one space dimension, Z. Phys. B 51 (1983) 65.
J. von Delft and H. Schoeller, Bosonization for beginners: refermionization for experts, Annalen Phys. 7 (1998) 225 [cond-mat/9805275] [INSPIRE] and references therein.
D. Sénéchal, An introduction to bosonization, cond-mat/9908262 [INSPIRE].
E. Mottola and R. Vaulin, Macroscopic effects of the quantum trace anomaly, Phys. Rev. D 74 (2006) 064004 [gr-qc/0604051] [INSPIRE].
A. Dettki, I. Sachs and A. Wipf, Generalized gauged Thirring model on curved space-times, hep-th/9308067 [INSPIRE].
S.R. Coleman, D.J. Gross and R. Jackiw, Fermion avatars of the Sugawara model, Phys. Rev. 180 (1969) 1359 [INSPIRE].
M. Tomiya, The Schwinger terms and the gravitational anomaly, Phys. Lett. B 167 (1986) 411 [INSPIRE].
M. Ebner, R. Heid and G. Lopes Cardoso, Gravitational anomalies and Schwinger terms, Z. Phys. C 37 (1987) 85 [INSPIRE].
R.A. Bertlmann and E. Kohlprath, Two-dimensional gravitational anomalies, Schwinger terms and dispersion relations, Annals Phys. 288 (2001) 137 [hep-th/0011067] [INSPIRE].
P. Goddard and D.I. Olive, Kac-Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A 1 (1986) 303 [INSPIRE].
H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].
H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].
P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer, New York U.S.A. (1997).
C. Corianò, L. Delle Rose, E. Mottola and M. Serino, Graviton vertices and the mapping of anomalous correlators to momentum space for a general conformal field theory, JHEP 08 (2012) 147 [arXiv:1203.1339] [INSPIRE].
M. Serino, Conformal anomaly actions and dilaton interactions, arXiv:1407.7113 [INSPIRE].
P.H. Ginsparg, Applied conformal field theory, in Les Houches Summer School, France (1988) [hep-th/9108028] [INSPIRE].
J. Erdmenger and H. Osborn, Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [INSPIRE].
J. Erdmenger, Conformally covariant differential operators: properties and applications, Class. Quant. Grav. 14 (1997) 2061 [hep-th/9704108] [INSPIRE].
A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].
J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1407.8523
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Blaschke, D.N., Carballo-Rubio, R. & Mottola, E. Fermion pairing and the scalar boson of the 2D conformal anomaly. J. High Energ. Phys. 2014, 153 (2014). https://doi.org/10.1007/JHEP12(2014)153
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2014)153
Keywords
- 2D Gravity
- Anomalies in Field and String Theories
- Field Theories in Lower Dimensions