Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Fermion pairing and the scalar boson of the 2D conformal anomaly
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Condensates and anomaly cascade in vector-like theories

19 March 2021

Mohamed M. Anber

General anomaly matching by Goldstone bosons

04 March 2021

Kazuya Yonekura

New anomalies, TQFTs, and confinement in bosonic chiral gauge theories

08 February 2022

Mohamed M. Anber, Sungwoo Hong & Minho Son

Topological terms and anomaly matching in effective field theories on ℝ3 × 𝕊1. Part I. Abelian symmetries and intermediate scales

18 January 2021

Erich Poppitz & F. David Wandler

Thermal correlators and bosonization dualities in large N Chern-Simons matter theories

03 February 2023

Sudip Ghosh & Subhajit Mazumdar

Bose-Fermi Chern-Simons dualities in the Higgsed phase

28 November 2018

Sayantan Choudhury, Anshuman Dey, … Naveen Prabhakar

Spin gauge theory, duality and fermion pairing

09 February 2022

Shantonu Mukherjee & Amitabha Lahiri

Chiral anomaly and Schwinger effect in non-abelian gauge theories

19 March 2019

Valerie Domcke, Yohei Ema, … Ryosuke Sato

N $$ \mathcal{N} $$ = (1, 0) anomaly multiplet relations in six dimensions

10 July 2020

Clay Córdova, Thomas T. Dumitrescu & Kenneth Intriligator

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 23 December 2014

Fermion pairing and the scalar boson of the 2D conformal anomaly

  • Daniel N. Blaschke1,
  • Raúl Carballo-Rubio2 &
  • Emil Mottola1 

Journal of High Energy Physics volume 2014, Article number: 153 (2014) Cite this article

  • 382 Accesses

  • 8 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We analyze the phenomenon of fermion pairing into an effective boson associated with anomalies and the anomalous commutators of currents, bilinear in the fermion fields. In two spacetime dimensions the chiral bosonization of the Schwinger model is determined by the chiral current anomaly of massless Dirac fermions. A similar bosonized description applies to the 2D conformal trace anomaly of the fermion stress-energy tensor. For both the chiral and conformal anomalies, correlation functions involving anomalous currents, j μ5 or T μν of massless fermions exhibit a massless boson 1/k 2 pole, and the associated spectral functions obey a UV finite sum rule, becoming δ-functions in the massless limit. In both cases the corresponding effective action of the anomaly is non-local, but may be expressed in a local form by the introduction of a new bosonic field, which becomes a bona fide propagating quantum field in its own right. In both cases this is expressed in Fock space by the anomalous Schwinger commutators of currents becoming the canonical commutation relations of the corresponding boson. The boson has a Fock space operator realization as a coherent superposition of massless fermion pairs, which saturates the intermediate state sums in quantum correlation functions of fermion currents. The Casimir energy of fermions on a finite spatial interval [0, L] can also be described as a coherent scalar condensation of pairs, and the one-loop correlation function of any number n of fermion stress-energy tensors 〈TT . . . T 〉 may be expressed as a combinatoric sum of n!/2 linear tree diagrams of the scalar boson.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. A.J. Leggett, Quantum liquids: Bose condensation and Cooper pairing in condensed-matter systems, Oxford graduate texts in mathematics, Oxford University Press, Oxford U.K. (2006).

  2. P.C.W. Davies, S.A. Fulling and W.G. Unruh, Energy momentum tensor near an evaporating black hole, Phys. Rev. D 13 (1976) 2720 [INSPIRE].

    ADS  Google Scholar 

  3. L.S. Brown, Stress tensor trace anomaly in a gravitational metric: scalar fields, Phys. Rev. D 15 (1977) 1469 [INSPIRE].

    ADS  Google Scholar 

  4. N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge U.K. (1982).

  5. J.S. Schwinger, Gauge invariance and mass, Phys. Rev. 125 (1962) 397 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. J.S. Schwinger, Gauge invariance and mass. 2, Phys. Rev. 128 (1962) 2425 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. L.S. Brown, Gauge invariance and mass in a two-dimensional model, Nuovo Cim. 29 (1963) 617.

    Article  Google Scholar 

  8. J.H. Lowenstein and J.A. Swieca, Quantum electrodynamics in two-dimensions, Annals Phys. 68 (1971) 172 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Casher, J.B. Kogut and L. Susskind, Vacuum polarization and the absence of free quarks, Phys. Rev. D 10 (1974) 732 [INSPIRE].

    ADS  Google Scholar 

  10. M.B. Halpern, Equivalent-boson method and free currents in two-dimensional gauge theories, Phys. Rev. D 13 (1976) 337 [INSPIRE].

    ADS  Google Scholar 

  11. N.S. Manton, The Schwinger model and its axial anomaly, Annals Phys. 159 (1985) 220 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Wolf and J. Zittartz, Physics of the Schwinger model, Z. Phys. B 59 (1985) 117.

    Article  ADS  MathSciNet  Google Scholar 

  13. J.E. Hetrick and Y. Hosotani, QED on a circle, Phys. Rev. D 38 (1988) 2621 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. R. Link, Eigenstates of the Schwinger model Hamiltonian, Phys. Rev. D 42 (1990) 2103 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. I. Sachs and A. Wipf, Finite temperature Schwinger model, Helv. Phys. Acta 65 (1992) 652 [arXiv:1005.1822] [INSPIRE].

    MathSciNet  Google Scholar 

  16. A.V. Smilga, On the fermion condensate in Schwinger model, Phys. Lett. B 278 (1992) 371 [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Dürr and A. Wipf, Finite temperature Schwinger model with chirality breaking boundary conditions, Annals Phys. 255 (1997) 333 [hep-th/9610241] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  18. Y. Hosotani and R. Rodriguez, Bosonized massive N flavor Schwinger model, J. Phys. A 31 (1998) 9925 [hep-th/9804205] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. S. Azakov, The Schwinger model on a circle: relation between path integral and Hamiltonian approaches, Int. J. Mod. Phys. A 21 (2006) 6593 [hep-th/0511116] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. A.D. Dolgov and V.I. Zakharov, On conservation of the axial current in massless electrodynamics, Nucl. Phys. B 27 (1971) 525 [INSPIRE].

    Article  ADS  Google Scholar 

  21. J. Horejsi, Ultraviolet and infrared aspects of the axial anomaly II, Czech. J. Phys. 42 (1992) 345 [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Giannotti and E. Mottola, The trace anomaly and massless scalar degrees of freedom in gravity, Phys. Rev. D 79 (2009) 045014 [arXiv:0812.0351] [INSPIRE].

    ADS  Google Scholar 

  23. R. Armillis, C. Corianò and L. Delle Rose, Anomaly poles as common signatures of chiral and conformal anomalies, Phys. Lett. B 682 (2009) 322 [arXiv:0909.4522] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J.S. Schwinger, Field theory commutators, Phys. Rev. Lett. 3 (1959) 296 [INSPIRE].

    Article  ADS  Google Scholar 

  25. A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. B. Klaiber, The Thirring model in Boulder 1967, Lectures in theoretical physics vol. Xa — Quantum Theory and Statistical Physics, New York U.S.A. (1968), pg. 141 [INSPIRE].

  27. S.R. Coleman, The quantum sine-Gordon equation as the massive Thirring model, Phys. Rev. D 11 (1975) 2088 [INSPIRE].

    ADS  Google Scholar 

  28. S.R. Coleman, R. Jackiw and L. Susskind, Charge shielding and quark confinement in the massive Schwinger model, Annals Phys. 93 (1975) 267 [INSPIRE].

    Article  ADS  Google Scholar 

  29. E. Witten, Instantons, the quark model and the 1/n expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].

    Article  ADS  Google Scholar 

  30. G. Veneziano, U(1) without instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. S. Azakov, H. Joos and A. Wipf, Witten-Veneziano relation for the Schwinger model, Phys. Lett. B 479 (2000) 245 [hep-th/0002197] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. K. Johnson, γ5 invariance, Phys. Lett. 5 (1963) 253 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Nakahara, Geometry, topology and physics, second edition, Graduate student series in physics, Institute of Physics Publishing, Bristol U.K. (2003) [INSPIRE].

  34. R. Jackiw, Topological investigations of quantized gauge theories, in Relativity, groups and topology, vol. II, B. DeWitt and R. Stora eds., North-Holland, Amsterdam The Netherlands (1983) [INSPIRE].

  35. C.P. Burgess and F. Quevedo, Bosonization as duality, Nucl. Phys. B 421 (1994) 373 [hep-th/9401105] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. K. Fujikawa, Path integral measure for gauge invariant fermion theories, Phys. Rev. Lett. 42 (1979) 1195 [INSPIRE].

    Article  ADS  Google Scholar 

  37. K. Fujikawa, Path integral for gauge theories with fermions, Phys. Rev. D 21 (1980) 2848 [Erratum ibid. D 22 (1980) 1499] [INSPIRE].

  38. K. Fujikawa and H. Suzuki, Anomalies, local counter terms and bosonization, Phys. Rept. 398 (2004) 221 [hep-th/0305008] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. R.A. Bertlmann, Anomalies in quantum field theory, International series of monographs on physics 91, Clarendon, Oxford U.K. (1996) [INSPIRE].

  40. S.R. Coleman, More about the massive Schwinger model, Annals Phys. 101 (1976) 239 [INSPIRE].

    Article  ADS  Google Scholar 

  41. E. Mottola, Functional integration over geometries, J. Math. Phys. 36 (1995) 2470 [hep-th/9502109] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. J.E. Hetrick, Y. Hosotani and S. Iso, The massive multi-flavor Schwinger model, Phys. Lett. B 350 (1995) 92 [hep-th/9502113] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J.E. Hetrick, Y. Hosotani and S. Iso, The interplay between mass, volume, vacuum angle and chiral condensate in N flavor QED in two-dimensions, Phys. Rev. D 53 (1996) 7255 [hep-th/9510090] [INSPIRE].

    ADS  Google Scholar 

  44. E.C.G. Stueckelberg, Interaction forces in electrodynamics and in the field theory of nuclear forces, Helv. Phys. Acta 11 (1938) 299 [INSPIRE].

    Google Scholar 

  45. A. Aurilia, Y. Takahashi and P.K. Townsend, The U(1) problem and the Higgs mechanism in two-dimensions and four-dimensions, Phys. Lett. B 95 (1980) 265 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. C. Adam, R.A. Bertlmann and P. Hofer, Overview on the anomaly and Schwinger term in two-dimensional QED, Riv. Nuovo Cim. 16N8 (1993) 1 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  47. D. Wolf and J. Zittartz, Bosons and fermions in one space dimension, Z. Phys. B 51 (1983) 65.

    Article  ADS  MathSciNet  Google Scholar 

  48. J. von Delft and H. Schoeller, Bosonization for beginners: refermionization for experts, Annalen Phys. 7 (1998) 225 [cond-mat/9805275] [INSPIRE] and references therein.

  49. D. Sénéchal, An introduction to bosonization, cond-mat/9908262 [INSPIRE].

  50. E. Mottola and R. Vaulin, Macroscopic effects of the quantum trace anomaly, Phys. Rev. D 74 (2006) 064004 [gr-qc/0604051] [INSPIRE].

    ADS  Google Scholar 

  51. A. Dettki, I. Sachs and A. Wipf, Generalized gauged Thirring model on curved space-times, hep-th/9308067 [INSPIRE].

  52. S.R. Coleman, D.J. Gross and R. Jackiw, Fermion avatars of the Sugawara model, Phys. Rev. 180 (1969) 1359 [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Tomiya, The Schwinger terms and the gravitational anomaly, Phys. Lett. B 167 (1986) 411 [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Ebner, R. Heid and G. Lopes Cardoso, Gravitational anomalies and Schwinger terms, Z. Phys. C 37 (1987) 85 [INSPIRE].

    ADS  Google Scholar 

  55. R.A. Bertlmann and E. Kohlprath, Two-dimensional gravitational anomalies, Schwinger terms and dispersion relations, Annals Phys. 288 (2001) 137 [hep-th/0011067] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. P. Goddard and D.I. Olive, Kac-Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A 1 (1986) 303 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  59. P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal field theory, Springer, New York U.S.A. (1997).

    Book  MATH  Google Scholar 

  60. C. Corianò, L. Delle Rose, E. Mottola and M. Serino, Graviton vertices and the mapping of anomalous correlators to momentum space for a general conformal field theory, JHEP 08 (2012) 147 [arXiv:1203.1339] [INSPIRE].

    Article  ADS  Google Scholar 

  61. M. Serino, Conformal anomaly actions and dilaton interactions, arXiv:1407.7113 [INSPIRE].

  62. P.H. Ginsparg, Applied conformal field theory, in Les Houches Summer School, France (1988) [hep-th/9108028] [INSPIRE].

  63. J. Erdmenger and H. Osborn, Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B 483 (1997) 431 [hep-th/9605009] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  64. J. Erdmenger, Conformally covariant differential operators: properties and applications, Class. Quant. Grav. 14 (1997) 2061 [hep-th/9704108] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  65. A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, U.S.A.

    Daniel N. Blaschke & Emil Mottola

  2. Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008, Granada, Spain

    Raúl Carballo-Rubio

Authors
  1. Daniel N. Blaschke
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Raúl Carballo-Rubio
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Emil Mottola
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Emil Mottola.

Additional information

ArXiv ePrint: 1407.8523

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blaschke, D.N., Carballo-Rubio, R. & Mottola, E. Fermion pairing and the scalar boson of the 2D conformal anomaly. J. High Energ. Phys. 2014, 153 (2014). https://doi.org/10.1007/JHEP12(2014)153

Download citation

  • Received: 01 August 2014

  • Accepted: 27 November 2014

  • Published: 23 December 2014

  • DOI: https://doi.org/10.1007/JHEP12(2014)153

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 2D Gravity
  • Anomalies in Field and String Theories
  • Field Theories in Lower Dimensions
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.