R. Haag, J.T. Lopuszanski and M. Sohnius, All Possible Generators of Supersymmetries of the s Matrix, Nucl. Phys.
B 88 (1975) 257 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
A. Salam and J.A. Strathdee, Supersymmetry and Fermion Number Conservation, Nucl. Phys.
B 87 (1975) 85 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys.
B 90 (1975) 104 [INSPIRE].
ADS
Article
Google Scholar
P. Fayet, N = 2 Extended Supersymmetric GUTs: Gauge Boson/Higgs Boson Unification, Mass Spectrum and Central Charges, Nucl. Phys.
B 246 (1984) 89 [INSPIRE].
ADS
Article
Google Scholar
P. Fayet, Six-dimensional Supersymmetric QED, R Invariance and N = 2 Supersymmetry Breaking by Dimensional Reduction, Nucl. Phys.
B 263 (1986) 649 [INSPIRE].
ADS
Article
Google Scholar
S. Abel and M. Goodsell, Easy Dirac Gauginos, JHEP
06 (2011) 064 [arXiv:1102.0014] [INSPIRE].
ADS
Article
Google Scholar
K. Benakli, Dirac Gauginos: A User Manual, Fortsch. Phys.
59 (2011) 1079 [arXiv:1106.1649] [INSPIRE].
ADS
Article
Google Scholar
P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP
08 (2002) 035 [hep-ph/0206096] [INSPIRE].
ADS
Article
Google Scholar
G.D. Kribs and A. Martin, Dirac Gauginos in Supersymmetry - Suppressed Jets + MET Signals: A Snowmass Whitepaper, arXiv:1308.3468 [INSPIRE].
I. Jack and D.R.T. Jones, Nonstandard soft supersymmetry breaking, Phys. Lett.
B 457 (1999) 101 [hep-ph/9903365] [INSPIRE].
ADS
Article
Google Scholar
M.D. Goodsell, Two-loop RGEs with Dirac gaugino masses, JHEP
01 (2013) 066 [arXiv:1206.6697] [INSPIRE].
ADS
Article
Google Scholar
K. Benakli and M.D. Goodsell, Dirac Gauginos in General Gauge Mediation, Nucl. Phys.
B 816 (2009) 185 [arXiv:0811.4409] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
K. Benakli and M.D. Goodsell, Dirac Gauginos, Gauge Mediation and Unification, Nucl. Phys.
B 840 (2010) 1 [arXiv:1003.4957] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev.
D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].
ADS
Google Scholar
C. Frugiuele and T. Gregoire, Making the Sneutrino a Higgs with a U (1)
R
Lepton Number, Phys. Rev.
D 85 (2012) 015016 [arXiv:1107.4634] [INSPIRE].
ADS
Google Scholar
C. Frugiuele, T. Gregoire, P. Kumar and E. Ponton, ′L = R′ — U(1)
R
Lepton Number at the LHC, JHEP
05 (2013) 012 [arXiv:1210.5257] [INSPIRE].
ADS
Article
Google Scholar
R. Davies, J. March-Russell and M. McCullough, A Supersymmetric One Higgs Doublet Model, JHEP
04 (2011) 108 [arXiv:1103.1647] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
F. Riva, C. Biggio and A. Pomarol, Is the 125 GeV Higgs the superpartner of a neutrino?, JHEP
02 (2013) 081 [arXiv:1211.4526] [INSPIRE].
ADS
Article
Google Scholar
S. Chakraborty and S. Roy, Higgs boson mass, neutrino masses and mixing and keV dark matter in an U(1)
R
− lepton number model, JHEP
01 (2014) 101 [arXiv:1309.6538] [INSPIRE].
Article
Google Scholar
R. Fok and G.D. Kribs, μ → e in R-symmetric Supersymmetry, Phys. Rev.
D 82 (2010) 035010 [arXiv:1004.0556] [INSPIRE].
ADS
Google Scholar
G.D. Kribs and A. Martin, Supersoft Supersymmetry is Super-Safe, Phys. Rev.
D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].
ADS
Google Scholar
M.R. Buckley, D. Hooper and J. Kumar, Phenomenology of Dirac Neutralino Dark Matter, Phys. Rev.
D 88 (2013) 063532 [arXiv:1307.3561] [INSPIRE].
ADS
Google Scholar
E.J. Chun, J.-C. Park and S. Scopel, Dirac gaugino as leptophilic dark matter, JCAP
02 (2010) 015 [arXiv:0911.5273] [INSPIRE].
ADS
Article
Google Scholar
G. Bélanger, K. Benakli, M. Goodsell, C. Moura and A. Pukhov, Dark Matter with Dirac and Majorana Gaugino Masses, JCAP
08 (2009) 027 [arXiv:0905.1043] [INSPIRE].
Article
Google Scholar
S.Y. Choi et al., Color-octet scalars at the LHC, Acta Phys. Polon.
B 40 (2009) 1947 [arXiv:0902.4706] [INSPIRE].
ADS
Google Scholar
S.Y. Choi, J. Kalinowski, J.M. Kim and E. Popenda, Scalar gluons and Dirac gluinos at the LHC, Acta Phys. Polon.
B 40 (2009) 2913 [arXiv:0911.1951] [INSPIRE].
ADS
Google Scholar
S.Y. Choi et al., Dirac Neutralinos and Electroweak Scalar Bosons of N = 1/N = 2 Hybrid Supersymmetry at Colliders, JHEP
08 (2010) 025 [arXiv:1005.0818] [INSPIRE].
ADS
Google Scholar
S.Y. Choi, D. Choudhury, A. Freitas, J. Kalinowski and P.M. Zerwas, The Extended Higgs System in R-symmetric Supersymmetry Theories, Phys. Lett.
B 697 (2011) 215 [Erratum ibid.
B 698 (2011) 457] [arXiv:1012.2688] [INSPIRE].
J. Kalinowski, Exploring Dirac neutralinos and EW adjoint scalars of N = 1/N = 2 hybrid SUSY at colliders, PoS(ICHEP 2010)396 [arXiv:1012.0922] [INSPIRE].
J. Kalinowski, Phenomenology of R-symmetric supersymmetry, Acta Phys. Polon.
B 42 (2011) 2425 [INSPIRE].
Article
Google Scholar
W. Kotlarski and J. Kalinowski, Scalar gluons at the LHC, Acta Phys. Polon.
B 42 (2011) 2485 [INSPIRE].
Article
Google Scholar
W. Kotlarski, A. Kalinowski and J. Kalinowski, Searching for Sgluons in the Same-sign Leptons Final State at the LHC, Acta Phys. Polon.
B 44 (2013) 2149 [INSPIRE].
ADS
Article
Google Scholar
K. Benakli, M.D. Goodsell and F. Staub, Dirac Gauginos and the 125 GeV Higgs, JHEP
06 (2013) 073 [arXiv:1211.0552] [INSPIRE].
ADS
Article
Google Scholar
E. Bertuzzo, C. Frugiuele, T. Gregoire and E. Ponton, Dirac gauginos, R symmetry and the 125 GeV Higgs, arXiv:1402.5432 [INSPIRE].
S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett.
43 (1979) 1566 [INSPIRE].
ADS
Article
Google Scholar
N. Sakai and T. Yanagida, Proton Decay in a Class of Supersymmetric Grand Unified Models, Nucl. Phys.
B 197 (1982) 533 [INSPIRE].
ADS
Article
Google Scholar
J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J.
C 46 (2006) 43 [hep-ph/0511344] [INSPIRE].
ADS
Article
Google Scholar
Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics (RPP), Chin. Phys.
C 38 (2014) 090001 [INSPIRE].
ADS
Article
Google Scholar
Wolfram Research Inc., Mathematica Version 9.0/10.0, Champaign U.S.A. (2012/2014).
F. Staub, Sarah, arXiv:0806.0538 [INSPIRE].
F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun.
181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].
ADS
Article
MATH
Google Scholar
F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun.
182 (2011) 808 [arXiv:1002.0840] [INSPIRE].
ADS
Article
MATH
Google Scholar
F. Staub, SARAH 3.2: Dirac Gauginos, UFO output and more, Computer Physics Communications
184 (2013) pp. 1792-1809 [arXiv:1207.0906] [INSPIRE].
ADS
Article
Google Scholar
F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun.
185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].
ADS
Article
Google Scholar
W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e
+
e
−
colliders, Comput. Phys. Commun.
153 (2003) 275 [hep-ph/0301101] [INSPIRE].
ADS
Article
Google Scholar
W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun.
183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
ADS
Article
Google Scholar
P. Athron, J.-h. Park, D. Stöckinger and A. Voigt, FlexibleSUSY — A spectrum generator generator for supersymmetric models, arXiv:1406.2319 [INSPIRE].
B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun.
143 (2002) 305 [hep-ph/0104145] [INSPIRE].
ADS
Article
MATH
Google Scholar
B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt and A.G. Williams, Next-to-Minimal SOFTSUSY, Comput. Phys. Commun.
185 (2014) 2322 [arXiv:1311.7659] [INSPIRE].
ADS
Article
Google Scholar
H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett.
66 (1991) 1815 [INSPIRE].
ADS
Article
Google Scholar
J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett.
B 262 (1991) 477 [INSPIRE].
ADS
Article
Google Scholar
P.H. Chankowski, S. Pokorski and J. Rosiek, Charged and neutral supersymmetric Higgs boson masses: Complete one loop analysis, Phys. Lett.
B 274 (1992) 191 [INSPIRE].
ADS
Article
Google Scholar
M. Sperling, D. Stöckinger and A. Voigt, Renormalization of vacuum expectation values in spontaneously broken gauge theories, JHEP
07 (2013) 132 [arXiv:1305.1548] [INSPIRE].
ADS
Article
Google Scholar
M. Sperling, D. Stöckinger and A. Voigt, Renormalization of vacuum expectation values in spontaneously broken gauge theories: Two-loop results, JHEP
01 (2014) 068 [arXiv:1310.7629] [INSPIRE].
Article
Google Scholar
A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Three-loop Higgs self-coupling β-function in the Standard Model with complex Yukawa matrices, Nucl. Phys.
B 879 (2014) 256 [arXiv:1310.3806] [INSPIRE].
ADS
Article
Google Scholar
T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.
140 (2001) 418 [hep-ph/0012260] [INSPIRE].
ADS
Article
MATH
Google Scholar
B. Chokoufe Nejad, T. Hahn, J.-N. Lang and E. Mirabella, FormCalc 8: Better Algebra and Vectorization, J. Phys. Conf. Ser.
523 (2014) 012050 [arXiv:1310.0274] [INSPIRE].
ADS
Article
Google Scholar
T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.
118 (1999) 153 [hep-ph/9807565] [INSPIRE].
ADS
Article
Google Scholar
S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev.
D 7 (1973) 1888 [INSPIRE].
ADS
Google Scholar
B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP
09 (2004) 044 [hep-ph/0406166] [INSPIRE].
ADS
Article
Google Scholar
G. Degrassi, S. Fanchiotti and A. Sirlin, Relations Between the On-shell and Ms Frameworks and the M (W ) — M (Z) Interdependence, Nucl. Phys.
B 351 (1991) 49 [INSPIRE].
ADS
Article
Google Scholar
T. Blank and W. Hollik, Precision observables in SU(2) × U(1) models with an additional Higgs triplet, Nucl. Phys.
B 514 (1998) 113 [hep-ph/9703392] [INSPIRE].
ADS
Article
Google Scholar
P.H. Chankowski, S. Pokorski and J. Wagner, (Non)decoupling of the Higgs triplet effects, Eur. Phys. J.
C 50 (2007) 919 [hep-ph/0605302] [INSPIRE].
ADS
Article
Google Scholar
D. Lopez-Val and T. Robens, Delta r and the W-boson mass in the Singlet Extension of the Standard Model, arXiv:1406.1043 [INSPIRE].
S. Fanchiotti, B.A. Kniehl and A. Sirlin, Incorporation of QCD effects in basic corrections of the electroweak theory, Phys. Rev.
D 48 (1993) 307 [hep-ph/9212285] [INSPIRE].
ADS
Google Scholar
D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys.
B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].
ADS
Article
Google Scholar
M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett.
65 (1990) 964 [INSPIRE].
ADS
Article
Google Scholar
W.J. Marciano and J.L. Rosner, Atomic parity violation as a probe of new physics, Phys. Rev. Lett.
65 (1990) 2963 [Erratum ibid.
68 (1992) 898] [INSPIRE].
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.
D 46 (1992) 381 [INSPIRE].
ADS
Google Scholar
D.C. Kennedy and P. Langacker, Precision electroweak experiments and heavy physics: A Global analysis, Phys. Rev. Lett.
65 (1990) 2967 [Erratum ibid.
66 (1991) 395] [INSPIRE].
D.C. Kennedy and P. Langacker, Precision electroweak experiments and heavy physics: An Update, Phys. Rev.
D 44 (1991) 1591 [INSPIRE].
ADS
Google Scholar
G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett.
B 253 (1991) 161 [INSPIRE].
ADS
Article
Google Scholar
G. Cynolter and E. Lendvai, Electroweak Precision Constraints on Vector-like Fermions, Eur. Phys. J.
C 58 (2008) 463 [arXiv:0804.4080] [INSPIRE].
ADS
Article
Google Scholar
M. Drees and K. Hagiwara, Supersymmetric Contribution to the Electroweak ρ Parameter, Phys. Rev.
D 42 (1990) 1709 [INSPIRE].
ADS
Google Scholar
A. Buckley, PySLHA: a Pythonic interface to SUSY Les Houches Accord data, arXiv:1305.4194 [INSPIRE].
M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev.
D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].
ADS
Google Scholar
A. Ferroglia and A. Sirlin, Comparison of the Standard Theory Predictions of M
W
and sin f
2
θ
lepteff
with their Experimental Values, Phys. Rev.
D 87 (2013) 037501 [arXiv:1211.1864] [INSPIRE].
ADS
Google Scholar
P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun.
181 (2010) 138 [arXiv:0811.4169] [INSPIRE].
ADS
Article
MATH
Google Scholar
P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun.
182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].
ADS
Article
Google Scholar
P. Bechtle et al., Recent Developments in HiggsBounds and a Preview of HiggsSignals, PoS(CHARGED 2012)024.
P. Bechtle et al., HiggsBounds − 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J.
C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].
ADS
Article
Google Scholar
P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J.
C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].
ADS
Article
Google Scholar
O. Stål and T. Stefaniak, Constraining extended Higgs sectors with HiggsSignals, PoS(EPS-HEP 2013)314 [arXiv:1310.4039] [INSPIRE].
J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious
: A Tool For Finding The Global Minima Of One-Loop Effective Potentials With Many Scalars, Eur. Phys. J.
C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].
ADS
Article
Google Scholar
J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys.
B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].
ADS
Article
Google Scholar