Skip to main content

Higgs boson mass and electroweak observables in the MRSSM

A preprint version of the article is available at arXiv.

Abstract

R-symmetry is a fundamental symmetry which can solve the SUSY flavor problem and relax the search limits on SUSY masses. Here we provide a complete next-to- leading order computation and discussion of the lightest Higgs boson mass, the W boson mass and muon decay in the minimal R-symmetric SUSY model (MRSSM). This model contains non-MSSM particles including a Higgs triplet, Dirac gauginos and higgsinos, and leads to significant new tree-level and one-loop contributions to these observables. We show that the model can accommodate the measured values of the observables for interesting regions of parameter space with stop masses of order 1 TeV in spite of the absence of stop mixing. We characterize these regions and provide typical benchmark points, which are also checked against further experimental constraints. A detailed exposition of the model, its mass matrices and its Feynman rules relevant for computations in this paper is also provided.

References

  1. R. Haag, J.T. Lopuszanski and M. Sohnius, All Possible Generators of Supersymmetries of the s Matrix, Nucl. Phys. B 88 (1975) 257 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  2. A. Salam and J.A. Strathdee, Supersymmetry and Fermion Number Conservation, Nucl. Phys. B 87 (1975) 85 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  3. P. Fayet, Supergauge Invariant Extension of the Higgs Mechanism and a Model for the electron and Its Neutrino, Nucl. Phys. B 90 (1975) 104 [INSPIRE].

    ADS  Article  Google Scholar 

  4. P. Fayet, N = 2 Extended Supersymmetric GUTs: Gauge Boson/Higgs Boson Unification, Mass Spectrum and Central Charges, Nucl. Phys. B 246 (1984) 89 [INSPIRE].

    ADS  Article  Google Scholar 

  5. P. Fayet, Six-dimensional Supersymmetric QED, R Invariance and N = 2 Supersymmetry Breaking by Dimensional Reduction, Nucl. Phys. B 263 (1986) 649 [INSPIRE].

    ADS  Article  Google Scholar 

  6. S. Abel and M. Goodsell, Easy Dirac Gauginos, JHEP 06 (2011) 064 [arXiv:1102.0014] [INSPIRE].

    ADS  Article  Google Scholar 

  7. K. Benakli, Dirac Gauginos: A User Manual, Fortsch. Phys. 59 (2011) 1079 [arXiv:1106.1649] [INSPIRE].

    ADS  Article  Google Scholar 

  8. P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].

    ADS  Article  Google Scholar 

  9. G.D. Kribs and A. Martin, Dirac Gauginos in Supersymmetry - Suppressed Jets + MET Signals: A Snowmass Whitepaper, arXiv:1308.3468 [INSPIRE].

  10. I. Jack and D.R.T. Jones, Nonstandard soft supersymmetry breaking, Phys. Lett. B 457 (1999) 101 [hep-ph/9903365] [INSPIRE].

    ADS  Article  Google Scholar 

  11. M.D. Goodsell, Two-loop RGEs with Dirac gaugino masses, JHEP 01 (2013) 066 [arXiv:1206.6697] [INSPIRE].

    ADS  Article  Google Scholar 

  12. K. Benakli and M.D. Goodsell, Dirac Gauginos in General Gauge Mediation, Nucl. Phys. B 816 (2009) 185 [arXiv:0811.4409] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  13. K. Benakli and M.D. Goodsell, Dirac Gauginos, Gauge Mediation and Unification, Nucl. Phys. B 840 (2010) 1 [arXiv:1003.4957] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  14. G.D. Kribs, E. Poppitz and N. Weiner, Flavor in supersymmetry with an extended R-symmetry, Phys. Rev. D 78 (2008) 055010 [arXiv:0712.2039] [INSPIRE].

    ADS  Google Scholar 

  15. C. Frugiuele and T. Gregoire, Making the Sneutrino a Higgs with a U (1) R Lepton Number, Phys. Rev. D 85 (2012) 015016 [arXiv:1107.4634] [INSPIRE].

    ADS  Google Scholar 

  16. C. Frugiuele, T. Gregoire, P. Kumar and E. Ponton, ′L = R′ — U(1) R Lepton Number at the LHC, JHEP 05 (2013) 012 [arXiv:1210.5257] [INSPIRE].

    ADS  Article  Google Scholar 

  17. R. Davies, J. March-Russell and M. McCullough, A Supersymmetric One Higgs Doublet Model, JHEP 04 (2011) 108 [arXiv:1103.1647] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  18. F. Riva, C. Biggio and A. Pomarol, Is the 125 GeV Higgs the superpartner of a neutrino?, JHEP 02 (2013) 081 [arXiv:1211.4526] [INSPIRE].

    ADS  Article  Google Scholar 

  19. S. Chakraborty and S. Roy, Higgs boson mass, neutrino masses and mixing and keV dark matter in an U(1) R lepton number model, JHEP 01 (2014) 101 [arXiv:1309.6538] [INSPIRE].

    Article  Google Scholar 

  20. R. Fok and G.D. Kribs, μe in R-symmetric Supersymmetry, Phys. Rev. D 82 (2010) 035010 [arXiv:1004.0556] [INSPIRE].

    ADS  Google Scholar 

  21. G.D. Kribs and A. Martin, Supersoft Supersymmetry is Super-Safe, Phys. Rev. D 85 (2012) 115014 [arXiv:1203.4821] [INSPIRE].

    ADS  Google Scholar 

  22. M.R. Buckley, D. Hooper and J. Kumar, Phenomenology of Dirac Neutralino Dark Matter, Phys. Rev. D 88 (2013) 063532 [arXiv:1307.3561] [INSPIRE].

    ADS  Google Scholar 

  23. E.J. Chun, J.-C. Park and S. Scopel, Dirac gaugino as leptophilic dark matter, JCAP 02 (2010) 015 [arXiv:0911.5273] [INSPIRE].

    ADS  Article  Google Scholar 

  24. G. Bélanger, K. Benakli, M. Goodsell, C. Moura and A. Pukhov, Dark Matter with Dirac and Majorana Gaugino Masses, JCAP 08 (2009) 027 [arXiv:0905.1043] [INSPIRE].

    Article  Google Scholar 

  25. S.Y. Choi et al., Color-octet scalars at the LHC, Acta Phys. Polon. B 40 (2009) 1947 [arXiv:0902.4706] [INSPIRE].

    ADS  Google Scholar 

  26. S.Y. Choi, J. Kalinowski, J.M. Kim and E. Popenda, Scalar gluons and Dirac gluinos at the LHC, Acta Phys. Polon. B 40 (2009) 2913 [arXiv:0911.1951] [INSPIRE].

    ADS  Google Scholar 

  27. S.Y. Choi et al., Dirac Neutralinos and Electroweak Scalar Bosons of N = 1/N = 2 Hybrid Supersymmetry at Colliders, JHEP 08 (2010) 025 [arXiv:1005.0818] [INSPIRE].

    ADS  Google Scholar 

  28. S.Y. Choi, D. Choudhury, A. Freitas, J. Kalinowski and P.M. Zerwas, The Extended Higgs System in R-symmetric Supersymmetry Theories, Phys. Lett. B 697 (2011) 215 [Erratum ibid. B 698 (2011) 457] [arXiv:1012.2688] [INSPIRE].

  29. J. Kalinowski, Exploring Dirac neutralinos and EW adjoint scalars of N = 1/N = 2 hybrid SUSY at colliders, PoS(ICHEP 2010)396 [arXiv:1012.0922] [INSPIRE].

  30. J. Kalinowski, Phenomenology of R-symmetric supersymmetry, Acta Phys. Polon. B 42 (2011) 2425 [INSPIRE].

    Article  Google Scholar 

  31. W. Kotlarski and J. Kalinowski, Scalar gluons at the LHC, Acta Phys. Polon. B 42 (2011) 2485 [INSPIRE].

    Article  Google Scholar 

  32. W. Kotlarski, A. Kalinowski and J. Kalinowski, Searching for Sgluons in the Same-sign Leptons Final State at the LHC, Acta Phys. Polon. B 44 (2013) 2149 [INSPIRE].

    ADS  Article  Google Scholar 

  33. K. Benakli, M.D. Goodsell and F. Staub, Dirac Gauginos and the 125 GeV Higgs, JHEP 06 (2013) 073 [arXiv:1211.0552] [INSPIRE].

    ADS  Article  Google Scholar 

  34. E. Bertuzzo, C. Frugiuele, T. Gregoire and E. Ponton, Dirac gauginos, R symmetry and the 125 GeV Higgs, arXiv:1402.5432 [INSPIRE].

  35. S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    ADS  Article  Google Scholar 

  36. N. Sakai and T. Yanagida, Proton Decay in a Class of Supersymmetric Grand Unified Models, Nucl. Phys. B 197 (1982) 533 [INSPIRE].

    ADS  Article  Google Scholar 

  37. J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344] [INSPIRE].

    ADS  Article  Google Scholar 

  38. Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics (RPP), Chin. Phys. C 38 (2014) 090001 [INSPIRE].

    ADS  Article  Google Scholar 

  39. Wolfram Research Inc., Mathematica Version 9.0/10.0, Champaign U.S.A. (2012/2014).

  40. F. Staub, Sarah, arXiv:0806.0538 [INSPIRE].

  41. F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  42. F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  43. F. Staub, SARAH 3.2: Dirac Gauginos, UFO output and more, Computer Physics Communications 184 (2013) pp. 1792-1809 [arXiv:1207.0906] [INSPIRE].

    ADS  Article  Google Scholar 

  44. F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].

    ADS  Article  Google Scholar 

  45. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].

    ADS  Article  Google Scholar 

  46. W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].

    ADS  Article  Google Scholar 

  47. P. Athron, J.-h. Park, D. Stöckinger and A. Voigt, FlexibleSUSYA spectrum generator generator for supersymmetric models, arXiv:1406.2319 [INSPIRE].

  48. B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  49. B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt and A.G. Williams, Next-to-Minimal SOFTSUSY, Comput. Phys. Commun. 185 (2014) 2322 [arXiv:1311.7659] [INSPIRE].

    ADS  Article  Google Scholar 

  50. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    ADS  Article  Google Scholar 

  51. J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].

    ADS  Article  Google Scholar 

  52. P.H. Chankowski, S. Pokorski and J. Rosiek, Charged and neutral supersymmetric Higgs boson masses: Complete one loop analysis, Phys. Lett. B 274 (1992) 191 [INSPIRE].

    ADS  Article  Google Scholar 

  53. M. Sperling, D. Stöckinger and A. Voigt, Renormalization of vacuum expectation values in spontaneously broken gauge theories, JHEP 07 (2013) 132 [arXiv:1305.1548] [INSPIRE].

    ADS  Article  Google Scholar 

  54. M. Sperling, D. Stöckinger and A. Voigt, Renormalization of vacuum expectation values in spontaneously broken gauge theories: Two-loop results, JHEP 01 (2014) 068 [arXiv:1310.7629] [INSPIRE].

    Article  Google Scholar 

  55. A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Three-loop Higgs self-coupling β-function in the Standard Model with complex Yukawa matrices, Nucl. Phys. B 879 (2014) 256 [arXiv:1310.3806] [INSPIRE].

    ADS  Article  Google Scholar 

  56. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  57. B. Chokoufe Nejad, T. Hahn, J.-N. Lang and E. Mirabella, FormCalc 8: Better Algebra and Vectorization, J. Phys. Conf. Ser. 523 (2014) 012050 [arXiv:1310.0274] [INSPIRE].

    ADS  Article  Google Scholar 

  58. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    ADS  Article  Google Scholar 

  59. S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  60. B.C. Allanach, A. Djouadi, J.L. Kneur, W. Porod and P. Slavich, Precise determination of the neutral Higgs boson masses in the MSSM, JHEP 09 (2004) 044 [hep-ph/0406166] [INSPIRE].

    ADS  Article  Google Scholar 

  61. G. Degrassi, S. Fanchiotti and A. Sirlin, Relations Between the On-shell and Ms Frameworks and the M (W ) — M (Z) Interdependence, Nucl. Phys. B 351 (1991) 49 [INSPIRE].

    ADS  Article  Google Scholar 

  62. T. Blank and W. Hollik, Precision observables in SU(2) × U(1) models with an additional Higgs triplet, Nucl. Phys. B 514 (1998) 113 [hep-ph/9703392] [INSPIRE].

    ADS  Article  Google Scholar 

  63. P.H. Chankowski, S. Pokorski and J. Wagner, (Non)decoupling of the Higgs triplet effects, Eur. Phys. J. C 50 (2007) 919 [hep-ph/0605302] [INSPIRE].

    ADS  Article  Google Scholar 

  64. D. Lopez-Val and T. Robens, Delta r and the W-boson mass in the Singlet Extension of the Standard Model, arXiv:1406.1043 [INSPIRE].

  65. S. Fanchiotti, B.A. Kniehl and A. Sirlin, Incorporation of QCD effects in basic corrections of the electroweak theory, Phys. Rev. D 48 (1993) 307 [hep-ph/9212285] [INSPIRE].

    ADS  Google Scholar 

  66. D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].

    ADS  Article  Google Scholar 

  67. M.E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    ADS  Article  Google Scholar 

  68. W.J. Marciano and J.L. Rosner, Atomic parity violation as a probe of new physics, Phys. Rev. Lett. 65 (1990) 2963 [Erratum ibid. 68 (1992) 898] [INSPIRE].

  69. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  70. D.C. Kennedy and P. Langacker, Precision electroweak experiments and heavy physics: A Global analysis, Phys. Rev. Lett. 65 (1990) 2967 [Erratum ibid. 66 (1991) 395] [INSPIRE].

  71. D.C. Kennedy and P. Langacker, Precision electroweak experiments and heavy physics: An Update, Phys. Rev. D 44 (1991) 1591 [INSPIRE].

    ADS  Google Scholar 

  72. G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett. B 253 (1991) 161 [INSPIRE].

    ADS  Article  Google Scholar 

  73. G. Cynolter and E. Lendvai, Electroweak Precision Constraints on Vector-like Fermions, Eur. Phys. J. C 58 (2008) 463 [arXiv:0804.4080] [INSPIRE].

    ADS  Article  Google Scholar 

  74. M. Drees and K. Hagiwara, Supersymmetric Contribution to the Electroweak ρ Parameter, Phys. Rev. D 42 (1990) 1709 [INSPIRE].

    ADS  Google Scholar 

  75. A. Buckley, PySLHA: a Pythonic interface to SUSY Les Houches Accord data, arXiv:1305.4194 [INSPIRE].

  76. M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].

    ADS  Google Scholar 

  77. A. Ferroglia and A. Sirlin, Comparison of the Standard Theory Predictions of M W and sin f 2 θ lepteff with their Experimental Values, Phys. Rev. D 87 (2013) 037501 [arXiv:1211.1864] [INSPIRE].

    ADS  Google Scholar 

  78. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  79. P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].

    ADS  Article  Google Scholar 

  80. P. Bechtle et al., Recent Developments in HiggsBounds and a Preview of HiggsSignals, PoS(CHARGED 2012)024.

  81. P. Bechtle et al., HiggsBounds − 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].

    ADS  Article  Google Scholar 

  82. P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].

    ADS  Article  Google Scholar 

  83. O. Stål and T. Stefaniak, Constraining extended Higgs sectors with HiggsSignals, PoS(EPS-HEP 2013)314 [arXiv:1310.4039] [INSPIRE].

  84. J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious : A Tool For Finding The Global Minima Of One-Loop Effective Potentials With Many Scalars, Eur. Phys. J. C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].

    ADS  Article  Google Scholar 

  85. J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Diessner.

Additional information

ArXiv ePrint: 1410.4791

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diessner, P., Kalinowski, J., Kotlarski, W. et al. Higgs boson mass and electroweak observables in the MRSSM. J. High Energ. Phys. 2014, 124 (2014). https://doi.org/10.1007/JHEP12(2014)124

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2014)124

Keywords

  • Supersymmetry Phenomenology