Advertisement

Journal of High Energy Physics

, 2014:123 | Cite as

NNLL momentum-space threshold resummation in direct top quark production at the LHC

  • Li Lin Yang
  • Chong Sheng Li
  • Jun Gao
  • Jian WangEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We update the theoretical precision of the total cross section for direct top quark production at the LHC by extending the threshold resummation to the next-to-next-to-leading logarithmic accuracy.

Keywords

Resummation Effective field theories QCD 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    ATLAS collaboration, Combination of ATLAS and CMS results on the mass of the top-quark using up to 4.9 fb −1 of \( \sqrt{s}=7 \) TeV LHC data, ATLAS-CONF-2013-102 (2013).
  4. [4]
    CMS Collaboration, Combination of ATLAS and CMS results on the mass of the top quark using up to 4.9 inverse femtobarns of data, CMS-PAS-TOP-13-005 (2013).
  5. [5]
    CDF Collaboration, D0 collaboration, T.E.W. Group, Combination of CDF and D0 results on the mass of the top quark using up to 9.7 fb −1 at the Tevatron, arXiv:1407.2682 [INSPIRE].
  6. [6]
    ATLAS Collaboration, CDF Collaboration, CMS Collaboration, D0 collaboration, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].
  7. [7]
    P. Bärnreuther, M. Czakon and A. Mitov, Percent level precision physics at the tevatron: first genuine NNLO QCD corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α s4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-group improved predictions for top-quark pair production at hadron colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.-L. Yang, RG-improved single-particle inclusive cross sections and forward-backward asymmetry in \( t\overline{t} \) production at hadron colliders, JHEP 09 (2011) 070 [arXiv:1103.0550] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    H.X. Zhu, C.S. Li, H.T. Li, D.Y. Shao and L.L. Yang, Transverse-momentum resummation for top-quark pairs at hadron colliders, Phys. Rev. Lett. 110 (2013) 082001 [arXiv:1208.5774] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Broggio, A.S. Papanastasiou and A. Signer, Renormalization-group improved fully differential cross sections for top pair production, JHEP 1410 (2014) 98 [arXiv:1407.2532] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    N. Kidonakis, NNLL resummation for s-channel single top quark production, Phys. Rev. D 81 (2010) 054028 [arXiv:1001.5034] [INSPIRE].ADSGoogle Scholar
  16. [16]
    H.X. Zhu, C.S. Li, J. Wang and J.J. Zhang, Factorization and resummation of s-channel single top quark production, JHEP 02 (2011) 099 [arXiv:1006.0681] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Wang, C.S. Li and H.X. Zhu, Resummation prediction on top quark transverse momentum distribution at large p T, Phys. Rev. D 87 (2013) 034030 [arXiv:1210.7698] [INSPIRE].ADSGoogle Scholar
  18. [18]
    N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [INSPIRE].ADSGoogle Scholar
  19. [19]
    J. Gao, C.S. Li and H.X. Zhu, Top quark decay at next-to-next-to leading order in QCD, Phys. Rev. Lett. 110 (2013) 042001 [arXiv:1210.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    M. Brucherseifer, F. Caola and K. Melnikov, \( \mathcal{O}\left({\alpha}_s^2\right) \) corrections to fully-differential top quark decays, JHEP 04 (2013) 059 [arXiv:1301.7133] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    ATLAS collaboration, Search for FCNC single top-quark production at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 712 (2012) 351 [arXiv:1203.0529] [INSPIRE].ADSGoogle Scholar
  22. [22]
    ATLAS collaboration, A search for flavour changing neutral currents in top-quark decays in pp collision data collected with the ATLAS detector at \( \sqrt{s}=7 \) TeV, JHEP 09 (2012) 139 [arXiv:1206.0257] [INSPIRE].ADSGoogle Scholar
  23. [23]
    CMS collaboration, Search for flavor changing neutral currents in top quark decays in pp collisions at 7 TeV, Phys. Lett. B 718 (2013) 1252 [arXiv:1208.0957] [INSPIRE].ADSGoogle Scholar
  24. [24]
    CMS collaboration, Search for flavor-changing neutral currents in top-quark decays tZq in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 112 (2014) 171802 [arXiv:1312.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    CMS Collaboration, Search for flavor changing neutral currents in top quark decays in pp collisions at 8 TeV, CMS-PAS-TOP-12-037 (2012).
  26. [26]
    ATLAS collaboration, Search for single top-quark production via FCNC in strong interaction in \( \sqrt{s}=8 \) TeV ATLAS data, ATLAS-CONF-2013-063 (2013).
  27. [27]
    CMS collaboration, Combined multilepton and diphoton limit on tcH, CMS-PAS-HIG-13-034 (Combined multilepton and diphoton limit on t to cH).
  28. [28]
    CMS collaboration, Search for anomalous single top quark production in association with a photon, CMS-PAS-TOP-14-003 (2014).
  29. [29]
    CMS collaboration, Search for anomalous Wtb couplings and top FCNC in t-channel single-top-quark events, CMS-PAS-TOP-14-007 (2014).
  30. [30]
    J.J. Liu, C.S. Li, L.L. Yang and L.G. Jin, Next-to-leading order QCD corrections to the direct top quark production via model-independent FCNC couplings at hadron colliders, Phys. Rev. D 72 (2005) 074018 [hep-ph/0508016] [INSPIRE].ADSGoogle Scholar
  31. [31]
    J. Gao, C.S. Li, L.L. Yang and H. Zhang, Search for anomalous top quark production at the early LHC, Phys. Rev. Lett. 107 (2011) 092002 [arXiv:1104.4945] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S.L. Glashow, J. Iliopoulos and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].ADSGoogle Scholar
  33. [33]
    J.A. Aguilar-Saavedra, Top flavor-changing neutral interactions: Theoretical expectations and experimental detection, Acta Phys. Polon. B 35 (2004) 2695 [hep-ph/0409342] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.J. Zhang et al., Next-to-leading order QCD corrections to the top quark decay via model-independent FCNC couplings, Phys. Rev. Lett. 102 (2009) 072001 [arXiv:0810.3889] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J.J. Zhang et al., Next-to-leading order QCD corrections to the top quark decay via the flavor-changing neutral-current operators with mixing effects, Phys. Rev. D 82 (2010) 073005 [arXiv:1004.0898] [INSPIRE].ADSGoogle Scholar
  36. [36]
    J. Drobnak, S. Fajfer and J.F. Kamenik, Flavor changing neutral coupling mediated radiative top quark decays at next-to-leading order in QCD, Phys. Rev. Lett. 104 (2010) 252001 [arXiv:1004.0620] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    J. Drobnak, S. Fajfer and J.F. Kamenik, QCD corrections to flavor changing neutral coupling mediated rare top quark decays, Phys. Rev. D 82 (2010) 073016 [arXiv:1007.2551] [INSPIRE].ADSGoogle Scholar
  38. [38]
    L.L. Yang, C.S. Li, Y. Gao and J.J. Liu, Threshold resummation effects in direct top quark production at hadron colliders, Phys. Rev. D 73 (2006) 074017 [hep-ph/0601180] [INSPIRE].ADSGoogle Scholar
  39. [39]
    N. Kidonakis and E. Martin, Soft-gluon corrections in FCNC top-quark production via anomalous gluon couplings, Phys. Rev. D 90 (2014) 054021 [arXiv:1404.7488] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Catani, M.L. Mangano, P. Nason and L. Trentadue, The resummation of soft gluons in hadronic collisions, Nucl. Phys. B 478 (1996) 273 [hep-ph/9604351] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    R. Abbate, S. Forte and G. Ridolfi, A new prescription for soft gluon resummation, Phys. Lett. B 657 (2007) 55 [arXiv:0707.2452] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    T. Becher, M. Neubert and G. Xu, Dynamical threshold enhancement and resummation in Drell-Yan production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-group improved prediction for Higgs production at hadron colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Bonvini, S. Forte, M. Ghezzi and G. Ridolfi, Threshold resummation in SCET vs. perturbative QCD: an analytic comparison, Nucl. Phys. B 861 (2012) 337 [arXiv:1201.6364] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. Sterman and M. Zeng, Quantifying comparisons of threshold resummations, JHEP 05 (2014) 132 [arXiv:1312.5397] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    L.G. Almeida et al., Comparing and counting logs in direct and effective methods of QCD resummation, JHEP 04 (2014) 174 [arXiv:1401.4460] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    M. Bonvini, S. Forte, G. Ridolfi and L. Rottoli, Resummation prescriptions and ambiguities in SCET vs. direct QCD: Higgs production as a case study, arXiv:1409.0864 [INSPIRE].
  49. [49]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and momentum-space resummation in deep-inelastic scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009 [arXiv:1302.6246] [INSPIRE].ADSGoogle Scholar
  52. [52]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Li Lin Yang
    • 1
    • 2
    • 3
  • Chong Sheng Li
    • 1
    • 3
  • Jun Gao
    • 4
  • Jian Wang
    • 5
    Email author
  1. 1.School of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  2. 2.Collaborative Innovation Center of Quantum MatterBeijingChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina
  4. 4.Department of PhysicsSouthern Methodist UniversityDallasU.S.A.
  5. 5.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany

Personalised recommendations