Coulomb branch and the moduli space of instantons

Abstract

The moduli space of instantons on ℂ2 for any simple gauge group is studied using the Coulomb branch of \( \mathcal{N}=4 \) gauge theories in three dimensions. For a given simple group G, the Hilbert series of such an instanton moduli space is computed from the Coulomb branch of the quiver given by the over-extended Dynkin diagram of G. The computation includes the cases of non-simply-laced gauge groups G, complementing the ADHM constructions which are not available for exceptional gauge groups. Even though the Lagrangian description for non-simply laced Dynkin diagrams is not currently known, the prescription for computing the Coulomb branch Hilbert series of such diagrams is very simple. For instanton numbers one and two, the results are in agreement with previous works. New results and general features for the moduli spaces of three and higher instanton numbers are reported and discussed in detail.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y. Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. B 59 (1975) 85 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  2. [2]

    G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14 (1976) 3432.

  3. [3]

    M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y. Manin, Construction of Instantons, Phys. Lett. A 65 (1978) 185 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  4. [4]

    E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  5. [5]

    M.R. Douglas, Branes within branes, hep-th/9512077 [INSPIRE].

  6. [6]

    P.C. Argyres, M.R. Plesser and N. Seiberg, The moduli space of vacua of N = 2 SUSY QCD and duality in N = 1 SUSY QCD, Nucl. Phys. B 471 (1996) 159 [hep-th/9603042] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  7. [7]

    K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  8. [8]

    C. Romelsberger, Counting chiral primaries in N = 1, d = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  9. [9]

    J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  10. [10]

    A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge Theories and Macdonald Polynomials, Commun. Math. Phys. 319 (2013) 147 [arXiv:1110.3740] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  11. [11]

    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  12. [12]

    D. Gaiotto and S.S. Razamat, Exceptional indices, JHEP 05 (2012) 145 [arXiv:1203.5517] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  13. [13]

    H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1., Invent. Math. 162 (2005) 313 [math/0306198] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  14. [14]

    H. Nakajima and K. Yoshioka, Instanton counting on blowup. II. K-theoretic partition function, math/0505553 [INSPIRE].

  15. [15]

    C.A. Keller and J. Song, Counting exceptional instantons, JHEP 07 (2012) 085 [arXiv:1205.4722] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  16. [16]

    S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  17. [17]

    C.A. Keller, N. Mekareeya, J. Song and Y. Tachikawa, The ABCDEFG of Instantons and W-algebras, JHEP 03 (2012) 045 [arXiv:1111.5624] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  18. [18]

    A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert Series for Moduli Spaces of Two Instantons, JHEP 01 (2013) 070 [arXiv:1205.4741] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  19. [19]

    B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  20. [20]

    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  21. [21]

    N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359 [hep-th/0404225] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  22. [22]

    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N}=4 \) gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  24. [24]

    S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and Hall-Littlewood polynomials, JHEP 09 (2014) 178 [arXiv:1403.0585] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  25. [25]

    S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and Three Dimensional Sicilian Theories, JHEP 09 (2014) 185 [arXiv:1403.2384] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  26. [26]

    V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].

  27. [27]

    P.B. Kronheimer, The Construction of ALE spaces as hyperKähler quotients, J. Diff. Geom. 29 (1989) 665 [INSPIRE].

    MATH  MathSciNet  Google Scholar 

  28. [28]

    P. Kronheimer and H. Nakajima, Yang-mills instantons on ale gravitational instantons, Math. Ann. 288 (1990) 263.

    Article  MATH  MathSciNet  Google Scholar 

  29. [29]

    J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    M. Porrati and A. Zaffaroni, M theory origin of mirror symmetry in three-dimensional gauge theories, Nucl. Phys. B 490 (1997) 107 [hep-th/9611201] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  31. [31]

    S.S. Razamat and B. Willett, Down the rabbit hole with theories of class S, JHEP 1410 (2014) 99 [arXiv:1403.6107] [INSPIRE].

    Article  Google Scholar 

  32. [32]

    S. Kim, The Complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys. B 821 (2009) 241 [Erratum ibid. B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].

  33. [33]

    Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  34. [34]

    C. Krattenthaler, V.P. Spiridonov and G.S. Vartanov, Superconformal indices of three-dimensional theories related by mirror symmetry, JHEP 06 (2011) 008 [arXiv:1103.4075] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  35. [35]

    A. Kapustin and B. Willett, Generalized Superconformal Index for Three Dimensional Field Theories, arXiv:1106.2484 [INSPIRE].

  36. [36]

    J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional theories, SL(2, \( \mathrm{\mathbb{Z}} \)) and D-brane moduli spaces, Nucl. Phys. B 493 (1997) 148 [hep-th/9612131] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    A. Kapustin, D(n) quivers from branes, JHEP 12 (1998) 015 [hep-th/9806238] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  38. [38]

    A. Hanany and A. Zaffaroni, Issues on orientifolds: On the brane construction of gauge theories with SO(2N) global symmetry, JHEP 07 (1999) 009 [hep-th/9903242] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  39. [39]

    A. Hanany and J. Troost, Orientifold planes, affine algebras and magnetic monopoles, JHEP 08 (2001) 021 [hep-th/0107153] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  40. [40]

    B. Julia, Kac-Moody symmetry of gravitation and supergravity theories, talk at AMS summer seminar on Appication of Group Theory in Physics and Mathematical Physics, Chicago U.S.A. (1982).

  41. [41]

    A. Sen, Stable nonBPS bound states of BPS D-branes, JHEP 08 (1998) 010 [hep-th/9805019] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].

  43. [43]

    F. Englert and P. Windey, Quantization Condition fort Hooft Monopoles in Compact Simple Lie Groups, Phys. Rev. D 14 (1976) 2728 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. [44]

    P. Goddard, J. Nuyts and D.I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B 125 (1977) 1 [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  45. [45]

    A. Kapustin, Wilson-t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. [46]

    V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].

  47. [47]

    V. Borokhov, Monopole operators in three-dimensional N = 4 SYM and mirror symmetry, JHEP 03 (2004) 008 [hep-th/0310254] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  48. [48]

    M.K. Benna, I.R. Klebanov and T. Klose, Charges of Monopole Operators in Chern-Simons Yang-Mills Theory, JHEP 01 (2010) 110 [arXiv:0906.3008] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  49. [49]

    D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  50. [50]

    P.B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 (1990) 473.

    MATH  MathSciNet  Google Scholar 

  51. [51]

    R. Brylinski, Instantons and Kähler geometry of nilpotent orbits, in NATO Sci. Ser. C. Vol. 514: Representation theories and algebraic geometry [math/9811032] [INSPIRE].

  52. [52]

    P. Kobak and A. Swann, The hyperkähler geometry associated to Wolf spaces, Boll. Unione Mat. Ital. B 4 (2001) 587 [math/0001025].

  53. [53]

    E.B. Vinberg and V.L. Popov, On a class of quasihomogeneous affine varieties,” Math. USSR Izv. 6 (1972) 743.

  54. [54]

    D. Garfinkle, A new construction of the Joseph ideal (1982), http://hdl.handle.net/1721.1/15620.

  55. [55]

    A. Joseph, The minimal orbit in a simple lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup. 9 (1976) 1.

    MATH  Google Scholar 

  56. [56]

    D. Gaiotto, A. Neitzke and Y. Tachikawa, Argyres-Seiberg duality and the Higgs branch, Commun. Math. Phys. 294 (2010) 389 [arXiv:0810.4541] [INSPIRE].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  57. [57]

    D. Bashkirov, Examples of global symmetry enhancement by monopole operators, arXiv:1009.3477 [INSPIRE].

  58. [58]

    A. Dey, A. Hanany, P. Koroteev and N. Mekareeya, Mirror Symmetry in Three Dimensions via Gauged Linear Quivers, JHEP 06 (2014) 059 [arXiv:1402.0016] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Noppadol Mekareeya.

Additional information

ArXiv ePrint: 1408.6835

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cremonesi, S., Ferlito, G., Hanany, A. et al. Coulomb branch and the moduli space of instantons. J. High Energ. Phys. 2014, 103 (2014). https://doi.org/10.1007/JHEP12(2014)103

Download citation

Keywords

  • Supersymmetric gauge theory
  • Solitons Monopoles and Instantons
  • Brane Dynamics in Gauge Theories
  • Supersymmetry and Duality