A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y. Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett.
B 59 (1975) 85 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev. D 14 (1976) 3432.
M.F. Atiyah, N.J. Hitchin, V.G. Drinfeld and Y. Manin, Construction of Instantons, Phys. Lett.
A 65 (1978) 185 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
E. Witten, Small instantons in string theory, Nucl. Phys.
B 460 (1996) 541 [hep-th/9511030] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
M.R. Douglas, Branes within branes, hep-th/9512077 [INSPIRE].
P.C. Argyres, M.R. Plesser and N. Seiberg, The moduli space of vacua of N = 2 SUSY QCD and duality in N = 1 SUSY QCD, Nucl. Phys.
B 471 (1996) 159 [hep-th/9603042] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett.
B 387 (1996) 513 [hep-th/9607207] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
C. Romelsberger, Counting chiral primaries in N = 1, d = 4 superconformal field theories, Nucl. Phys.
B 747 (2006) 329 [hep-th/0510060] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys.
275 (2007) 209 [hep-th/0510251] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, Gauge Theories and Macdonald Polynomials, Commun. Math. Phys.
319 (2013) 147 [arXiv:1110.3740] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
D. Gaiotto, N = 2 dualities, JHEP
08 (2012) 034 [arXiv:0904.2715] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
D. Gaiotto and S.S. Razamat, Exceptional indices, JHEP
05 (2012) 145 [arXiv:1203.5517] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
H. Nakajima and K. Yoshioka, Instanton counting on blowup. 1., Invent. Math.
162 (2005) 313 [math/0306198] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
H. Nakajima and K. Yoshioka, Instanton counting on blowup. II. K-theoretic partition function, math/0505553 [INSPIRE].
C.A. Keller and J. Song, Counting exceptional instantons, JHEP
07 (2012) 085 [arXiv:1205.4722] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert Series of the One Instanton Moduli Space, JHEP
06 (2010) 100 [arXiv:1005.3026] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
C.A. Keller, N. Mekareeya, J. Song and Y. Tachikawa, The ABCDEFG of Instantons and W-algebras, JHEP
03 (2012) 045 [arXiv:1111.5624] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert Series for Moduli Spaces of Two Instantons, JHEP
01 (2013) 070 [arXiv:1205.4741] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP
03 (2007) 090 [hep-th/0701063] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.
7 (2004) 831 [hep-th/0206161] [INSPIRE].
Article
MathSciNet
Google Scholar
N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys.
252 (2004) 359 [hep-th/0404225] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d
\( \mathcal{N}=4 \)
gauge theories, JHEP
01 (2014) 005 [arXiv:1309.2657] [INSPIRE].
ADS
Article
Google Scholar
D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys.
13 (2009) 721 [arXiv:0807.3720] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and Hall-Littlewood polynomials, JHEP
09 (2014) 178 [arXiv:1403.0585] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and Three Dimensional Sicilian Theories, JHEP
09 (2014) 185 [arXiv:1403.2384] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP
11 (2002) 049 [hep-th/0206054] [INSPIRE].
P.B. Kronheimer, The Construction of ALE spaces as hyperKähler quotients, J. Diff. Geom.
29 (1989) 665 [INSPIRE].
MATH
MathSciNet
Google Scholar
P. Kronheimer and H. Nakajima, Yang-mills instantons on ale gravitational instantons, Math. Ann.
288 (1990) 263.
Article
MATH
MathSciNet
Google Scholar
J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys.
B 493 (1997) 101 [hep-th/9611063] [INSPIRE].
ADS
Article
Google Scholar
M. Porrati and A. Zaffaroni, M theory origin of mirror symmetry in three-dimensional gauge theories, Nucl. Phys.
B 490 (1997) 107 [hep-th/9611201] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
S.S. Razamat and B. Willett, Down the rabbit hole with theories of class S, JHEP
1410 (2014) 99 [arXiv:1403.6107] [INSPIRE].
Article
Google Scholar
S. Kim, The Complete superconformal index for N = 6 Chern-Simons theory, Nucl. Phys.
B 821 (2009) 241 [Erratum ibid.
B 864 (2012) 884] [arXiv:0903.4172] [INSPIRE].
Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP
04 (2011) 007 [arXiv:1101.0557] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
C. Krattenthaler, V.P. Spiridonov and G.S. Vartanov, Superconformal indices of three-dimensional theories related by mirror symmetry, JHEP
06 (2011) 008 [arXiv:1103.4075] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
A. Kapustin and B. Willett, Generalized Superconformal Index for Three Dimensional Field Theories, arXiv:1106.2484 [INSPIRE].
J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional theories, SL(2,
\( \mathrm{\mathbb{Z}} \)) and D-brane moduli spaces, Nucl. Phys.
B 493 (1997) 148 [hep-th/9612131] [INSPIRE].
ADS
Article
Google Scholar
A. Kapustin, D(n) quivers from branes, JHEP
12 (1998) 015 [hep-th/9806238] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
A. Hanany and A. Zaffaroni, Issues on orientifolds: On the brane construction of gauge theories with SO(2N) global symmetry, JHEP
07 (1999) 009 [hep-th/9903242] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
A. Hanany and J. Troost, Orientifold planes, affine algebras and magnetic monopoles, JHEP
08 (2001) 021 [hep-th/0107153] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
B. Julia, Kac-Moody symmetry of gravitation and supergravity theories, talk at AMS summer seminar on Appication of Group Theory in Physics and Mathematical Physics, Chicago U.S.A. (1982).
A. Sen, Stable nonBPS bound states of BPS D-branes, JHEP
08 (1998) 010 [hep-th/9805019] [INSPIRE].
ADS
Article
Google Scholar
G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys.
B 138 (1978) 1 [INSPIRE].
F. Englert and P. Windey, Quantization Condition for ’t Hooft Monopoles in Compact Simple Lie Groups, Phys. Rev.
D 14 (1976) 2728 [INSPIRE].
ADS
MathSciNet
Google Scholar
P. Goddard, J. Nuyts and D.I. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys.
B 125 (1977) 1 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
A. Kapustin, Wilson-’t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev.
D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].
ADS
MathSciNet
Google Scholar
V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP
12 (2002) 044 [hep-th/0207074] [INSPIRE].
V. Borokhov, Monopole operators in three-dimensional N = 4 SYM and mirror symmetry, JHEP
03 (2004) 008 [hep-th/0310254] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
M.K. Benna, I.R. Klebanov and T. Klose, Charges of Monopole Operators in Chern-Simons Yang-Mills Theory, JHEP
01 (2010) 110 [arXiv:0906.3008] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP
05 (2011) 015 [arXiv:1007.4861] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
P.B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom.
32 (1990) 473.
MATH
MathSciNet
Google Scholar
R. Brylinski, Instantons and Kähler geometry of nilpotent orbits, in NATO Sci. Ser. C. Vol. 514: Representation theories and algebraic geometry [math/9811032] [INSPIRE].
P. Kobak and A. Swann, The hyperkähler geometry associated to Wolf spaces, Boll. Unione Mat. Ital.
B 4 (2001) 587 [math/0001025].
E.B. Vinberg and V.L. Popov, On a class of quasihomogeneous affine varieties,” Math. USSR Izv.
6 (1972) 743.
D. Garfinkle, A new construction of the Joseph ideal (1982), http://hdl.handle.net/1721.1/15620.
A. Joseph, The minimal orbit in a simple lie algebra and its associated maximal ideal, Ann. Sci. École Norm. Sup.
9 (1976) 1.
MATH
Google Scholar
D. Gaiotto, A. Neitzke and Y. Tachikawa, Argyres-Seiberg duality and the Higgs branch, Commun. Math. Phys.
294 (2010) 389 [arXiv:0810.4541] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
D. Bashkirov, Examples of global symmetry enhancement by monopole operators, arXiv:1009.3477 [INSPIRE].
A. Dey, A. Hanany, P. Koroteev and N. Mekareeya, Mirror Symmetry in Three Dimensions via Gauged Linear Quivers, JHEP
06 (2014) 059 [arXiv:1402.0016] [INSPIRE].
ADS
Article
Google Scholar