Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Wrong sign and symmetric limits and non-decoupling in 2HDMs

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 December 2014
  • Volume 2014, article number 67, (2014)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Wrong sign and symmetric limits and non-decoupling in 2HDMs
Download PDF
  • P. M. Ferreira1,2,
  • Renato Guedes2,
  • Marco O. P. Sampaio3 &
  • …
  • Rui Santos1,2 
  • 398 Accesses

  • 54 Citations

  • 2 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We analyse the possibility that, in two Higgs doublet models, one or more of the Higgs couplings to fermions or to gauge bosons change sign, relative to the respective Higgs Standard Model couplings. Possible sign changes in the coupling of a neutral scalar to charged ones are also discussed. These wrong signs can have important physical consequences, manifesting themselves in Higgs production via gluon fusion or Higgs decay into two gluons or into two photons. We consider all possible wrong sign scenarios, and also the symmetric limit, in all possible Yukawa implementations of the two Higgs doublet model, in two different possibilities: the observed Higgs boson is the lightest CP-even scalar, or the heaviest one. We also analyse thoroughly the impact of the currently available LHC data on such scenarios. With all 8 TeV data analysed, all wrong sign scenarios are allowed in all Yukawa types, even at the 1σ level. However, we will show that B-physics constraints are crucial in excluding the possibility of wrong sign scenarios in the case where tan β is below 1. We will also discuss the future prospects for probing the wrong sign scenarios at the next LHC run. Finally we will present a scenario where the alignment limit could be excluded due to non-decoupling in the case where the heavy CP-even Higgs is the one discovered at the LHC.

Article PDF

Download to read the full article text

Similar content being viewed by others

Sensitivities on the anomalous quartic $$\gamma \gamma \gamma \gamma $$ and $$\gamma \gamma \gamma Z$$ couplings at the CLIC

Article Open access 18 January 2024

E. Gurkanli

The Discovery of the Higgs Boson at the LHC

Chapter © 2020

Renormalization-group improved Higgs to two gluons decay rate

Article 01 February 2024

Gauhar Abbas, Astha Jain, … Neelam Singh

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. P.M. Ferreira, J.F. Gunion, H.E. Haber and R. Santos, Probing wrong-sign Yukawa couplings at the LHC and a future linear collider, Phys. Rev. D 89 (2014) 115003 [arXiv:1403.4736] [INSPIRE].

    ADS  Google Scholar 

  4. J.R. Espinosa, C. Grojean, M. Mühlleitner and M. Trott, First glimpses at Higgs’ face, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].

    Article  ADS  Google Scholar 

  6. G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013) 075008 [arXiv:1306.2941] [INSPIRE].

    ADS  Google Scholar 

  7. K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision analysis updates 2014, Phys. Rev. D 90 (2014) 095009 [arXiv:1407.8236] [INSPIRE].

    ADS  Google Scholar 

  8. J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].

    ADS  Google Scholar 

  9. T.D. Lee, A theory of spontaneous T violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].

    ADS  Google Scholar 

  10. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Westview Press, Boulder U.S.A. (2000).

    Google Scholar 

  11. G.C. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    Article  ADS  Google Scholar 

  12. S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Google Scholar 

  13. E.A. Paschos, Diagonal neutral currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].

    ADS  Google Scholar 

  14. V.D. Barger, J.L. Hewett and R.J.N. Phillips, New constraints on the charged Higgs sector in two Higgs doublet models, Phys. Rev. D 41 (1990) 3421 [INSPIRE].

    ADS  Google Scholar 

  15. M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].

    ADS  Google Scholar 

  16. A. Arhrib, P.M. Ferreira and R. Santos, Are there hidden scalars in LHC Higgs results?, JHEP 03 (2014) 053 [arXiv:1311.1520] [INSPIRE].

    Article  ADS  Google Scholar 

  17. P.M. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett. B 603 (2004) 219 [Erratum ibid. B 629 (2005) 114] [hep-ph/0406231] [INSPIRE].

  18. M. Maniatis, A. von Manteuffel, O. Nachtmann and F. Nagel, Stability and symmetry breaking in the general two-Higgs-doublet model, Eur. Phys. J. C 48 (2006) 805 [hep-ph/0605184] [INSPIRE].

    Article  ADS  Google Scholar 

  19. I.P. Ivanov, Minkowski space structure of the Higgs potential in 2HDM, Phys. Rev. D 75 (2007) 035001 [Erratum ibid. D 76 (2007) 039902] [hep-ph/0609018] [INSPIRE].

  20. A. Barroso, P.M. Ferreira, I.P. Ivanov and R. Santos, Metastability bounds on the two Higgs doublet model, JHEP 06 (2013) 045 [arXiv:1303.5098] [INSPIRE].

    Article  ADS  Google Scholar 

  21. N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].

    ADS  Google Scholar 

  22. S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].

    Article  ADS  Google Scholar 

  24. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  25. C.D. Froggatt, R.G. Moorhouse and I.G. Knowles, Leading radiative corrections in two scalar doublet models, Phys. Rev. D 45 (1992) 2471 [INSPIRE].

    ADS  Google Scholar 

  26. W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].

    Article  ADS  Google Scholar 

  27. H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].

    ADS  Google Scholar 

  28. ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, Tevatron Electroweak Working Group and SLD Electroweak and Heavy Flavour Groups collaborations, Precision electroweak measurements and constraints on the standard model, arXiv:1012.2367 [INSPIRE].

  29. M. Baak et al., Updated status of the global electroweak fit and constraints on new physics, Eur. Phys. J. C 72 (2012) 2003 [arXiv:1107.0975] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B}\to {X}_s\gamma \) in the two Higgs doublet model up to next-to-next-to-leading order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].

    Article  ADS  Google Scholar 

  32. F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].

    ADS  Google Scholar 

  33. O. Deschamps et al., The two Higgs doublet of type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [INSPIRE].

    ADS  Google Scholar 

  34. A. Denner, R.J. Guth, W. Hollik and J.H. Kuhn, The Z width in the two Higgs doublet model, Z. Phys. C 51 (1991) 695 [INSPIRE].

    ADS  Google Scholar 

  35. M. Boulware and D. Finnell, Radiative corrections to \( BR\left(Z\to b\overline{b}\right) \) in the minimal supersymmetric standard model, Phys. Rev. D 44 (1991) 2054 [INSPIRE].

    ADS  Google Scholar 

  36. A.K. Grant, The heavy top quark in the two Higgs doublet model, Phys. Rev. D 51 (1995) 207 [hep-ph/9410267] [INSPIRE].

    ADS  Google Scholar 

  37. H.E. Haber and H.E. Logan, Radiative corrections to the \( Zb\overline{b} \) vertex and constraints on extended Higgs sectors, Phys. Rev. D 62 (2000) 015011 [hep-ph/9909335] [INSPIRE].

    ADS  Google Scholar 

  38. A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to sin2 \( {\theta}_{eff}^{b\overline{b}} \) and R b using numerical Mellin-Barnes integrals, JHEP 08 (2012) 050 [Erratum ibid. 05 (2013) 074] [arXiv:1205.0299] [INSPIRE].

  39. ALEPH, DELPHI, L3, OPAL and LEP collaboration, G. Abbiendi et al., Search for charged Higgs bosons: combined results using LEP data, Eur. Phys. J. C 73 (2013) 2463 [arXiv:1301.6065] [INSPIRE].

    ADS  Google Scholar 

  40. ATLAS collaboration, Search for charged Higgs bosons in the τ+jets final state with pp collision data recorded at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, ATLAS-CONF-2013-090, CERN, Geneva Switzerland (2013).

  41. ATLAS collaboration, Search for charged Higgs bosons decaying via H + → τν in top quark pair events using pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 06 (2012) 039 [arXiv:1204.2760] [INSPIRE].

    ADS  Google Scholar 

  42. CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].

    ADS  Google Scholar 

  43. BaBar collaboration, J.P. Lees et al., Evidence for an excess of \( \overline{B}\to {D}^{\left(*\right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

    Article  ADS  Google Scholar 

  44. P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

    ADS  Google Scholar 

  45. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  46. H.S. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson, JHEP 09 (2013) 085 [arXiv:1207.1083] [INSPIRE].

    Article  ADS  Google Scholar 

  47. W. Altmannshofer, S. Gori and G.D. Kribs, A minimal flavor violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].

    ADS  Google Scholar 

  48. Y. Bai, V. Barger, L.L. Everett and G. Shaughnessy, General two Higgs doublet model (2HDM-G) and Large Hadron Collider data, Phys. Rev. D 87 (2013) 115013 [arXiv:1210.4922] [INSPIRE].

    ADS  Google Scholar 

  49. C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production, Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].

    ADS  Google Scholar 

  50. A. Celis, V. Ilisie and A. Pich, LHC constraints on two-Higgs doublet models, JHEP 07 (2013) 053 [arXiv:1302.4022] [INSPIRE].

    Article  ADS  Google Scholar 

  51. C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs doublet models with a softly broken Z 2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Krawczyk, D. Sokolowska and B. SwieŻewska, 2HDM with Z 2 symmetry in light of new LHC data, J. Phys. Conf. Ser. 447 (2013) 012050 [arXiv:1303.7102] [INSPIRE].

    Article  ADS  Google Scholar 

  53. B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets model, JHEP 06 (2013) 094 [Erratum ibid. 09 (2013) 110] [arXiv:1304.0028] [INSPIRE].

  54. A. Barroso, P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM at the LHC — the story so far, arXiv:1304.5225 [INSPIRE].

  55. B. Coleppa, F. Kling and S. Su, Constraining type II 2HDM in light of LHC Higgs searches, JHEP 01 (2014) 161 [arXiv:1305.0002] [INSPIRE].

    Google Scholar 

  56. P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, 2HDM confronting LHC data, arXiv:1305.4587 [INSPIRE].

  57. O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, JHEP 07 (2013) 118 [arXiv:1305.1649] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Choi, S. Jung and P. Ko, Implications of LHC data on 125 GeV Higgs-like boson for the standard model and its various extensions, JHEP 10 (2013) 225 [arXiv:1307.3948] [INSPIRE].

    Article  ADS  Google Scholar 

  59. V. Barger, L.L. Everett, H.E. Logan and G. Shaughnessy, Scrutinizing the 125 GeV Higgs boson in two Higgs doublet models at the LHC, ILC and muon collider, Phys. Rev. D 88 (2013) 115003 [arXiv:1308.0052] [INSPIRE].

    ADS  Google Scholar 

  60. D. López-Val, T. Plehn and M. Rauch, Measuring extended Higgs sectors as a consistent free couplings model, JHEP 10 (2013) 134 [arXiv:1308.1979] [INSPIRE].

    Article  ADS  Google Scholar 

  61. S. Chang et al., Two Higgs doublet models for the LHC Higgs boson data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 09 (2014) 101 [arXiv:1310.3374] [INSPIRE].

    Article  ADS  Google Scholar 

  62. K. Cheung, J.S. Lee and P.-Y. Tseng, Higgcision in the two-Higgs doublet models, JHEP 01 (2014) 085 [arXiv:1310.3937] [INSPIRE].

    Article  Google Scholar 

  63. A. Celis, V. Ilisie and A. Pich, Towards a general analysis of LHC data within two-Higgs-doublet models, JHEP 12 (2013) 095 [arXiv:1310.7941] [INSPIRE].

    Article  ADS  Google Scholar 

  64. G. Cacciapaglia, A. Deandrea, G.D. La Rochelle and J.-B. Flament, Searching for a lighter Higgs: parametrisation and sample tests, arXiv:1311.5132 [INSPIRE].

  65. L. Wang and X.-F. Han, Status of the aligned two-Higgs-doublet model confronted with the Higgs data, JHEP 04 (2014) 128 [arXiv:1312.4759] [INSPIRE].

    Article  ADS  Google Scholar 

  66. K. Cranmer, S. Kreiss, D. Lopez-Val and T. Plehn, Decoupling theoretical uncertainties from measurements of the Higgs boson, arXiv:1401.0080 [INSPIRE].

  67. F.J. Botella et al., Physical constraints on a class of two-Higgs doublet models with FCNC at tree level, JHEP 07 (2014) 078 [arXiv:1401.6147] [INSPIRE].

    Article  ADS  Google Scholar 

  68. S. Kanemura, K. Tsumura, K. Yagyu and H. Yokoya, Fingerprinting non-minimal Higgs sectors, arXiv:1406.3294 [INSPIRE].

  69. A. Broggio, E.J. Chun, M. Passera, K.M. Patel and S.K. Vempati, Limiting two-Higgs-doublet models, JHEP 11 (2014) 058 [arXiv:1409.3199] [INSPIRE].

    Article  ADS  Google Scholar 

  70. R. Coimbra, M.O.P. Sampaio and R. Santos, ScannerS: constraining the phase diagram of a complex scalar singlet at the LHC, Eur. Phys. J. C 73 (2013) 2428 [arXiv:1301.2599] [INSPIRE].

    Article  ADS  Google Scholar 

  71. ScannerS webpage, http://scanners.hepforge.org/.

  72. R.V. Harlander, S. Liebler and H. Mantler, SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the standard model and the MSSM, Computer Physics Communications 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  73. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  74. R. Harlander, M. Mühlleitner, J. Rathsman, M. Spira and O. St al, Interim recommendations for the evaluation of Higgs production cross sections and branching ratios at the LHC in the two-Higgs-doublet model, arXiv:1312.5571 [INSPIRE].

  75. M. Spira, HIGLU: a program for the calculation of the total Higgs production cross-section at hadron colliders via gluon fusion including QCD corrections, hep-ph/9510347 [INSPIRE].

  76. D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  77. LHC Higgs cross section working group (2012–2013), https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.

  78. P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].

    Article  ADS  Google Scholar 

  79. P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].

    Article  ADS  Google Scholar 

  80. P.M. Ferreira, R. Santos, H.E. Haber and J.P. Silva, Mass-degenerate Higgs bosons at 125 GeV in the two-Higgs-doublet model, Phys. Rev. D 87 (2013) 055009 [arXiv:1211.3131] [INSPIRE].

    ADS  Google Scholar 

  81. D. Fontes, J.C. Romão and J.P. Silva, A reappraisal of the wrong-sign \( hb\overline{b} \) coupling and the study of h → Zγ, Phys. Rev. D 90 (2014) 015021 [arXiv:1406.6080] [INSPIRE].

    ADS  Google Scholar 

  82. A. Arhrib, C.-W. Chiang, D.K. Ghosh and R. Santos, Two Higgs doublet model in light of the standard model H → τ + τ − search at the LHC, Phys. Rev. D 85 (2012) 115003 [arXiv:1112.5527] [INSPIRE].

    ADS  Google Scholar 

  83. P.M. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020 [arXiv:1201.0019] [INSPIRE].

    ADS  Google Scholar 

  84. LHC Higgs Cross section Working Group collaboration, A. David et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, arXiv:1209.0040 [INSPIRE].

  85. B. Dumont, J.F. Gunion, Y. Jiang and S. Kraml, Constraints on and future prospects for two-Higgs-doublet models in light of the LHC Higgs signal, Phys. Rev. D 90 (2014) 035021 [arXiv:1405.3584] [INSPIRE].

    ADS  Google Scholar 

  86. P.M. Ferreira et al., The CP-conserving 2HDM after the 8 TeV run, arXiv:1407.4396 [INSPIRE].

  87. D. Fontes, J.C. Romão and J.P. Silva, h → Zγ in the complex two Higgs doublet model, arXiv:1408.2534 [INSPIRE].

  88. I.F. Ginzburg, M. Krawczyk and P. Osland, Resolving SM like scenarios via Higgs boson production at a photon collider. 1. 2HDM versus SM, in 2nd ECFA/DESY study 1998–2001, pg. 1705 [LC-TH-2001-026] [hep-ph/0101208] [INSPIRE].

  89. I.F. Ginzburg, M. Krawczyk and P. Osland, Potential of photon collider in resolving SM like scenarios, Nucl. Instrum. Meth. A 472 (2001) 149 [hep-ph/0101229] [INSPIRE].

    Article  ADS  Google Scholar 

  90. I.F. Ginzburg, M. Krawczyk and P. Osland, Standard model-like scenarios in the 2HDM and photon collider potential, in Physics and experiments with future linear e + e − colliders, A. Para and H.E. Fisk eds., Batavia U.S.A. (2000), AIP Conf. Proc. 578 (2001) 304 [hep-ph/0101331] [INSPIRE].

  91. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  92. Martin-Stirling-Thorne-Watt parton distribution functions webpage, http://projects.hepforge.org/mstwpdf/.

  93. J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009 [arXiv:1302.6246] [INSPIRE].

    ADS  Google Scholar 

  94. S. Dawson et al., Working group report: Higgs boson, arXiv:1310.8361 [INSPIRE].

  95. H. Ono and A. Miyamoto, A study of measurement precision of the Higgs boson branching ratios at the International Linear Collider, Eur. Phys. J. C 73 (2013) 2343 [arXiv:1207.0300] [INSPIRE].

    Article  ADS  Google Scholar 

  96. D.M. Asner et al., ILC Higgs white paper, arXiv:1310.0763 [INSPIRE].

  97. C.Q. Geng and J.N. Ng, Charged Higgs effect in \( {B}_d^0-{\overline{B}}_d^0 \) mixing, \( K\to \pi \nu \overline{\nu} \) decay and rare decays of B mesons, Phys. Rev. D 38 (1988) 2857 [Erratum ibid. D 41 (1990) 1715] [INSPIRE].

  98. A. Hocker, H. Lacker, S. Laplace and F. Le Diberder, A new approach to a global fit of the CKM matrix, Eur. Phys. J. C 21 (2001) 225 [hep-ph/0104062] [INSPIRE].

    Article  ADS  Google Scholar 

  99. CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].

    Article  ADS  Google Scholar 

  100. L. Wang and X.-F. Han, Study of the heavy CP-even Higgs with mass 125 GeV in two-Higgs-doublet models at the LHC and ILC, JHEP 11 (2014) 085 [arXiv:1404.7437] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  101. A. Arhrib, R. Benbrik, C.-H. Chen, R. Guedes and R. Santos, Double neutral Higgs production in the two-Higgs doublet model at the LHC, JHEP 08 (2009) 035 [arXiv:0906.0387] [INSPIRE].

    Article  ADS  Google Scholar 

  102. G. Bhattacharyya and D. Das, Nondecoupling of charged scalars in Higgs decay to two photons and symmetries of the scalar potential, arXiv:1408.6133 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Instituto Superior de Engenharia de Lisboa — ISEL, 1959-007, Lisboa, Portugal

    P. M. Ferreira & Rui Santos

  2. Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003, Lisboa, Portugal

    P. M. Ferreira, Renato Guedes & Rui Santos

  3. Departamento de Física da Universidade de Aveiro and I3N, Campus de Santiago, 3810-183, Aveiro, Portugal

    Marco O. P. Sampaio

Authors
  1. P. M. Ferreira
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Renato Guedes
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Marco O. P. Sampaio
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Rui Santos
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Rui Santos.

Additional information

ArXiv ePrint: 1409.6723

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, P.M., Guedes, R., Sampaio, M.O.P. et al. Wrong sign and symmetric limits and non-decoupling in 2HDMs. J. High Energ. Phys. 2014, 67 (2014). https://doi.org/10.1007/JHEP12(2014)067

Download citation

  • Received: 25 September 2014

  • Revised: 18 November 2014

  • Accepted: 27 November 2014

  • Published: 09 December 2014

  • DOI: https://doi.org/10.1007/JHEP12(2014)067

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Physics
  • Beyond Standard Model
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

5.135.140.155

Not affiliated

Springer Nature

© 2024 Springer Nature