Skip to main content

BPS spectrum of Argyres-Douglas theory via spectral network

Abstract

We study the BPS spectrum of four-dimensional \( \mathcal{N} \) = 2 superconformal field theory of Argyres-Douglas type, obtained via twisted compactification of six-dimensional A N −1 (2, 0) theory on a sphere with an irregular puncture, by using spectral networks. We give strong evidence of the equivalence of \( \mathcal{N} \) = 2 superconformal field theories from sixdimensional theories of different ranks by systematically comparing the chamber structure and wall-crossing phenomena.

This is a preview of subscription content, access via your institution.

References

  1. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in \( \mathcal{N} \) = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].

  2. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in \( \mathcal{N} \) = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. P.C. Argyres and M.R. Douglas, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B 448 (1995) 93 [hep-th/9505062] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. D. Gaiotto, \( \mathcal{N} \) = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].

  6. S. Cecotti, A. Neitzke and C. Vafa, R-twisting and 4d/2d correspondences, arXiv:1006.3435 [INSPIRE].

  7. S. Cecotti and C. Vafa, Classification of complete \( \mathcal{N} \) = 2 supersymmetric theories in 4 dimensions, Surv. Diff. Geom. 18 (2013) [arXiv:1103.5832] [INSPIRE].

  8. M. Alim et al., BPS quivers and spectra of complete \( \mathcal{N} \) = 2 Quantum Field Theories, Commun. Math. Phys. 323 (2013) 1185 [arXiv:1109.4941] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. G. Bonelli, K. Maruyoshi and A. Tanzini, Wild quiver gauge theories, JHEP 02 (2012) 031 [arXiv:1112.1691] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. D. Xie, General Argyres-Douglas theory, JHEP 01 (2013) 100 [arXiv:1204.2270] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. S. Cecotti and M. Del Zotto, Infinitely many \( \mathcal{N} \) = 2 SCFT with ADE flavor symmetry, JHEP 01 (2013) 191 [arXiv:1210.2886] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. H. Kanno, K. Maruyoshi, S. Shiba and M. Taki, W 3 irregular states and isolated \( \mathcal{N} \) = 2 superconformal field theories, JHEP 03 (2013) 147 [arXiv:1301.0721] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. S. Cecotti, M. Del Zotto and S. Giacomelli, More on the \( \mathcal{N} \) = 2 superconformal systems of type D p (G), JHEP 04 (2013) 153 [arXiv:1303.3149] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  14. D. Gaiotto, G.W. Moore and A. Neitzke, Spectral networks, Annales Henri Poincaré 14 (2013) 1643 [arXiv:1204.4824] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. D. Gaiotto, G.W. Moore and A. Neitzke, Spectral networks and snakes, arXiv:1209.0866 [INSPIRE].

  16. D. Galakhov, P. Longhi, T. Mainiero, G.W. Moore and A. Neitzke, Wild wall crossing and BPS giants, JHEP 11 (2013) 046 [arXiv:1305.5454] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A.D. Shapere and C. Vafa, BPS structure of Argyres-Douglas superconformal theories, hep-th/9910182 [INSPIRE].

  18. P.C. Argyres, K. Maruyoshi and Y. Tachikawa, Quantum Higgs branches of isolated \( \mathcal{N} \) = 2 superconformal field theories, JHEP 10 (2012) 054 [arXiv:1206.4700] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A.D. Shapere and Y. Tachikawa, Central charges of \( \mathcal{N} \) = 2 superconformal field theories in four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. D. Xie and P. Zhao, Central charges and RG flow of strongly-coupled \( \mathcal{N} \) = 2 theory, JHEP 03 (2013) 006 [arXiv:1301.0210] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. A. Klemm, W. Lerche, P. Mayr, C. Vafa and N.P. Warner, Selfdual strings and \( \mathcal{N} \) = 2 supersymmetric field theory, Nucl. Phys. B 477 (1996) 746 [hep-th/9604034] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS states, arXiv:1006.0146 [INSPIRE].

  23. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing in coupled 2d-4d systems, arXiv:1103.2598 [INSPIRE].

  24. A. Mikhailov, BPS states and minimal surfaces, Nucl. Phys. B 533 (1998) 243 [hep-th/9708068] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. K. Hori, C.Y. Park and Y. Tachikawa, 2d SCFTs from M2-branes, JHEP 11 (2013) 147 [arXiv:1309.3036] [INSPIRE].

    Article  ADS  Google Scholar 

  26. C.Y. Park, Ramification points of Seiberg-Witten curves, JHEP 07 (2011) 068 [arXiv:1102.0288] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. T. Eguchi, K. Hori, K. Ito and S.-K. Yang, Study of \( \mathcal{N} \) = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 471 (1996) 430 [hep-th/9603002] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. D. Gaiotto, N. Seiberg and Y. Tachikawa, Comments on scaling limits of 4d \( \mathcal{N} \) = 2 theories, JHEP 01 (2011) 078 [arXiv:1011.4568] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. O. Chacaltana and J. Distler, Tinkertoys for Gaiotto duality, JHEP 11 (2010) 099 [arXiv:1008.5203] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Yan.

Additional information

ArXiv ePrint: 1309.3050

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maruyoshi, K., Park, C.Y. & Yan, W. BPS spectrum of Argyres-Douglas theory via spectral network. J. High Energ. Phys. 2013, 92 (2013). https://doi.org/10.1007/JHEP12(2013)092

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)092

Keywords

  • Supersymmetric gauge theory
  • Extended Supersymmetry