Skip to main content
Log in

Sneutrino dark matter in low-scale seesaw scenarios

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider supersymmetric models in which sneutrinos are viable dark matter candidates. These are either simple extensions of the Minimal Supersymmetric Standard Model with additional singlet superfields, such as the inverse or linear seesaw, or a model with an additional U(1) group. All of these models can accomodate the observed small neutrino masses and large mixings. We investigate the properties of sneutrinos as dark matter candidates in these scenarios. We check for phenomenological bounds, such as correct relic abundance, consistency with direct detection cross section limits and laboratory constraints, among others lepton flavour violating (LFV) charged lepton decays. While inverse and linear seesaw lead to different results for LFV, both models have very similar dark matter phenomenology, consistent with all experimental bounds. The extended gauge model shows some additional and peculiar features due to the presence of an extra gauge boson Z and an additional light Higgs. Specifically, we point out that for sneutrino LSPs there is a strong constraint on the mass of the Z due to the experimental bounds on the direct detection scattering cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].

    Article  ADS  Google Scholar 

  2. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  3. L.E. Ibáñez, The scalar neutrinos as the lightest supersymmetric particles and cosmology, Phys. Lett. B 137 (1984) 160 [INSPIRE].

    ADS  Google Scholar 

  4. J.S. Hagelin, G.L. Kane and S. Raby, Perhaps scalar neutrinos are the lightest supersymmetric partners, Nucl. Phys. B 241 (1984) 638 [INSPIRE].

    Article  ADS  Google Scholar 

  5. K. Freese, Can scalar neutrinos or massive Dirac neutrinos be the missing mass?, Phys. Lett. B 167 (1986) 295 [INSPIRE].

    ADS  Google Scholar 

  6. T. Falk, K.A. Olive and M. Srednicki, Heavy sneutrinos as dark matter, Phys. Lett. B 339 (1994) 248 [hep-ph/9409270] [INSPIRE].

    ADS  Google Scholar 

  7. M.W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].

    ADS  Google Scholar 

  8. D.V. Forero, M. Tortola and J.W.F. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].

    ADS  Google Scholar 

  9. R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].

    ADS  Google Scholar 

  10. E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Dynamical left-right symmetry breaking, Phys. Rev. D 53 (1996) 2752 [hep-ph/9509255] [INSPIRE].

    ADS  Google Scholar 

  11. E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Left-right symmetry breaking in NJLS approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].

    ADS  Google Scholar 

  12. M. Hirsch, M. Malinsky, W. Porod, L. Reichert and F. Staub, Hefty MSSM-like light Higgs in extended gauge models, JHEP 02 (2012) 084 [arXiv:1110.3037] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Hirsch, W. Porod, L. Reichert and F. Staub, Phenomenology of the minimal supersymmetric U(1)B−L × U(1)R extension of the standard model, Phys. Rev. D 86 (2012) 093018 [arXiv:1206.3516] [INSPIRE].

    ADS  Google Scholar 

  14. T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter, Phys. Rev. D 73 (2006) 051301 [hep-ph/0512118] [INSPIRE].

    ADS  Google Scholar 

  15. T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter of the universe, Phys. Rev. D 75 (2007) 065001 [hep-ph/0612211] [INSPIRE].

    ADS  Google Scholar 

  16. K.-Y. Choi and O. Seto, A Dirac right-handed sneutrino dark matter and its signature in the gamma-ray lines, Phys. Rev. D 86 (2012) 043515 [Erratum ibid. D 86 (2012) 089904] [arXiv:1205.3276] [INSPIRE].

    ADS  Google Scholar 

  17. T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi LAT search for internal bremsstrahlung signatures from dark matter annihilation, JCAP 07 (2012) 054 [arXiv:1203.1312] [INSPIRE].

    Article  ADS  Google Scholar 

  18. C. Weniger, A tentative gamma-ray line from dark matter annihilation at the Fermi Large Area Telescope, JCAP 08 (2012) 007 [arXiv:1204.2797] [INSPIRE].

    Article  ADS  Google Scholar 

  19. S. Gopalakrishna, A. de Gouvêa and W. Porod, Right-handed sneutrinos as nonthermal dark matter, JCAP 05 (2006) 005 [hep-ph/0602027] [INSPIRE].

    Article  ADS  Google Scholar 

  20. F. Borzumati and Y. Nomura, Low scale seesaw mechanisms for light neutrinos, Phys. Rev. D 64 (2001) 053005 [hep-ph/0007018] [INSPIRE].

    ADS  Google Scholar 

  21. Z. Thomas, D. Tucker-Smith and N. Weiner, Mixed sneutrinos, dark matter and the CERN LHC, Phys. Rev. D 77 (2008) 115015 [arXiv:0712.4146] [INSPIRE].

    ADS  Google Scholar 

  22. B. Dumont, G. Bélanger, S. Fichet, S. Kraml and T. Schwetz, Mixed sneutrino dark matter in light of the 2011 XENON and LHC results, JCAP 09 (2012) 013 [arXiv:1206.1521] [INSPIRE].

    Article  ADS  Google Scholar 

  23. G. Bélanger, M. Kakizaki, E.K. Park, S. Kraml and A. Pukhov, Light mixed sneutrinos as thermal dark matter, JCAP 11 (2010) 017 [arXiv:1008.0580] [INSPIRE].

    Article  Google Scholar 

  24. G. Bélanger, S. Kraml and A. Lessa, Light sneutrino dark matter at the LHC, JHEP 07 (2011) 083 [arXiv:1105.4878] [INSPIRE].

    Article  Google Scholar 

  25. H.-S. Lee, K.T. Matchev and S. Nasri, Revival of the thermal sneutrino dark matter, Phys. Rev. D 76 (2007) 041302 [hep-ph/0702223] [INSPIRE].

    ADS  Google Scholar 

  26. G. Bélanger, J. Da Silva and A. Pukhov, The right-handed sneutrino as thermal dark matter in U(1) extensions of the MSSM, JCAP 12 (2011) 014 [arXiv:1110.2414] [INSPIRE].

    Article  Google Scholar 

  27. J. March-Russell, C. McCabe and M. McCullough, Neutrino-flavoured sneutrino dark matter, JHEP 03 (2010) 108 [arXiv:0911.4489] [INSPIRE].

    Article  ADS  Google Scholar 

  28. F. Deppisch and A. Pilaftsis, Thermal right-handed sneutrino dark matter in the F D -term model of hybrid inflation, JHEP 10 (2008) 080 [arXiv:0808.0490] [INSPIRE].

    Article  ADS  Google Scholar 

  29. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    ADS  Google Scholar 

  30. T. Yanagida, Horizontal symmetry and masses of neutrinos, in KEK lectures, O. Sawada and A. Sugamoto eds., KEK, Tsukuba Japan (1979) [INSPIRE].

    Google Scholar 

  31. M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Niewenhuizen and D.Z. Freedman eds., North Holland, Amsterdam Netherlands (1979) [INSPIRE].

  32. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  34. C. Arina and N. Fornengo, Sneutrino cold dark matter, a new analysis: relic abundance and detection rates, JHEP 11 (2007) 029 [arXiv:0709.4477] [INSPIRE].

    Article  ADS  Google Scholar 

  35. P. Bandyopadhyay, E.J. Chun and J.-C. Park, Right-handed sneutrino dark matter in U(1) seesaw models and its signatures at the LHC, JHEP 06 (2011) 129 [arXiv:1105.1652] [INSPIRE].

    Article  ADS  Google Scholar 

  36. D.G. Cerdeno and O. Seto, Right-handed sneutrino dark matter in the NMSSM, JCAP 08 (2009) 032 [arXiv:0903.4677] [INSPIRE].

    Article  ADS  Google Scholar 

  37. D.G. Cerdeno, J.-H. Huh, M. Peiro and O. Seto, Very light right-handed sneutrino dark matter in the NMSSM, JCAP 11 (2011) 027 [arXiv:1108.0978] [INSPIRE].

    Article  ADS  Google Scholar 

  38. C. Arina, F. Bazzocchi, N. Fornengo, J.C. Romao and J.W.F. Valle, Minimal supergravity sneutrino dark matter and inverse seesaw neutrino masses, Phys. Rev. Lett. 101 (2008) 161802 [arXiv:0806.3225] [INSPIRE].

    Article  ADS  Google Scholar 

  39. P.S. Bhupal Dev, S. Mondal, B. Mukhopadhyaya and S. Roy, Phenomenology of light sneutrino dark matter in cMSSM/mSUGRA with inverse seesaw, JHEP 09 (2012) 110 [arXiv:1207.6542] [INSPIRE].

    ADS  Google Scholar 

  40. Z. Kang, J. Li, T. Li, T. Liu and J. Yang, Asymmetric sneutrino dark matter in the NMSSM with minimal inverse seesaw, arXiv:1102.5644 [INSPIRE].

  41. H. An, P.S. Bhupal Dev, Y. Cai and R.N. Mohapatra, Sneutrino dark matter in gauged inverse seesaw models for neutrinos, Phys. Rev. Lett. 108 (2012) 081806 [arXiv:1110.1366][INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Khalil, H. Okada and T. Toma, Right-handed sneutrino dark matter in supersymmetric BL model, JHEP 07(2011) 026 [arXiv:1102.4249][INSPIRE].

    Article  ADS  Google Scholar 

  43. L. Basso, B. O’Leary, W. Porod and F. Staub, Dark matter scenarios in the minimal SUSY BL model, JHEP 09(2012) 054 [arXiv:1207.0507][INSPIRE].

    Article  ADS  Google Scholar 

  44. V. De Romeri, Right handed sneutrino dark matter in inverse and linear seesaw scenarios, arXiv:1209.1465 [INSPIRE].

  45. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].

    Article  ADS  Google Scholar 

  46. W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].

    Article  ADS  Google Scholar 

  47. F. Staub, SARAH, arXiv:0806.0538 [INSPIRE].

  48. F. Staub, From superpotential to model files for FeynArts and CalcHep/CompHEP, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. F. Staub, Automatic calculation of supersymmetric renormalization group equations and self energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  50. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  51. G. Bélanger, N.D. Christensen, A. Pukhov and A. Semenov, SLHAplus: a library for implementing extensions of the standard model, Comput. Phys. Commun. 182 (2011) 763 [arXiv:1008.0181] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. F. Staub, T. Ohl, W. Porod and C. Speckner, A tool box for implementing supersymmetric models, Comput. Phys. Commun. 183 (2012) 2165 [arXiv:1109.5147] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, BL violating masses in softly broken supersymmetry, Phys. Lett. B 398 (1997) 311 [hep-ph/9701253] [INSPIRE].

    ADS  Google Scholar 

  54. Y. Grossman and H.E. Haber, Sneutrino mixing phenomena, Phys. Rev. Lett. 78 (1997) 3438 [hep-ph/9702421] [INSPIRE].

    Article  ADS  Google Scholar 

  55. M. Malinsky, J.C. Romao and J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].

    Article  ADS  Google Scholar 

  56. P.S. Bhupal Dev and R.N. Mohapatra, TeV scale inverse seesaw in SO(10) and leptonic non-unitarity effects, Phys. Rev. D 81 (2010) 013001 [arXiv:0910.3924] [INSPIRE].

    ADS  Google Scholar 

  57. V. De Romeri, M. Hirsch and M. Malinsky, Soft masses in SUSY SO(10) GUTs with low intermediate scales, Phys. Rev. D 84 (2011) 053012 [arXiv:1107.3412] [INSPIRE].

    ADS  Google Scholar 

  58. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  59. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  60. OPAL collaboration, M.Z. Akrawy et al., Limits on neutral heavy lepton production from Z0 decay, Phys. Lett. B 247 (1990) 448 [INSPIRE].

    ADS  Google Scholar 

  61. L3 collaboration, O. Adriani et al., Search for isosinglet neutral heavy leptons in Z0 decays, Phys. Lett. B 295 (1992) 371 [INSPIRE].

    ADS  Google Scholar 

  62. DELPHI collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE].

    Google Scholar 

  63. L3 collaboration, P. Achard et al., Search for heavy isosinglet neutrino in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 67 [hep-ex/0107014] [INSPIRE].

    ADS  Google Scholar 

  64. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  65. P.S. Bhupal Dev, R. Franceschini and R.N. Mohapatra, Bounds on TeV seesaw models from LHC Higgs data, Phys. Rev. D 86 (2012) 093010 [arXiv:1207.2756] [INSPIRE].

    ADS  Google Scholar 

  66. P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].

    ADS  Google Scholar 

  67. CMS collaboration, Search for resonances in the dilepton mass distribution in pp collisions at \( \sqrt{s}=8\,TeV \), CMS-PAS-EXO-12-015 (2012), https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO.

  68. ATLAS collaboration, Search for high-mass resonances decaying to dilepton final states in pp collisions at a center-of-mass energy of 7 TeV with the ATLAS detector, arXiv:1209.2535 [INSPIRE].

  69. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb −1 of \( \sqrt{s}=8\,TeV \) proton-proton collision data, ATLAS-CONF-2012-109, presented at the 20th International Conference on Supersymmetry and Unification of Fundamental Interactions, Beijing China, 13-18 Aug 2012.

  70. CMS collaboration, Interpretation of searches for supersymmetry, CMS-PAS-SUS-11-016 (2012), updates available at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS.

  71. A. Santamaria, Masses, mixings, Yukawa couplings and their symmetries, Phys. Lett. B 305 (1993) 90 [hep-ph/9302301] [INSPIRE].

    ADS  Google Scholar 

  72. J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

    Article  ADS  Google Scholar 

  73. D.V. Forero, S. Morisi, M. Tortola and J.W.F. Valle, Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw, JHEP 09 (2011) 142 [arXiv:1107.6009] [INSPIRE].

    Article  ADS  Google Scholar 

  74. DAYA-BAY collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  75. RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  76. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

    ADS  Google Scholar 

  77. M. Hirsch, T. Kernreiter, J.C. Romao and A. Villanova del Moral, Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology, JHEP 01 (2010) 103 [arXiv:0910.2435] [INSPIRE].

    Article  ADS  Google Scholar 

  78. F. Borzumati and A. Masiero, Large muon and electron number violations in supergravity theories, Phys. Rev. Lett. 57 (1986) 961 [INSPIRE].

    Article  ADS  Google Scholar 

  79. M. Hirsch, F. Staub and A. Vicente, Enhancing l i → 3l j with the Z 0 -penguin, Phys. Rev. D 85 (2012) 113013 [arXiv:1202.1825] [INSPIRE].

    ADS  Google Scholar 

  80. A. Abada, D. Das, A. Vicente and C. Weiland, Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution, JHEP 09 (2012) 015 [arXiv:1206.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  81. D. Larson et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: power spectra and WMAP-derived parameters, Astrophys. J. Suppl. 192 (2011) 16 [arXiv:1001.4635] [INSPIRE].

    Article  ADS  Google Scholar 

  82. XENON100 collaboration, E. Aprile et al., Analysis of the XENON100 dark matter search data, arXiv:1207.3458 [INSPIRE].

  83. A. Bottino, F. Donato, N. Fornengo and S. Scopel, Size of the neutralino nucleon cross-section in the light of a new determination of the pion nucleon sigma term, Astropart. Phys. 18 (2002) 205 [hep-ph/0111229] [INSPIRE].

    Article  ADS  Google Scholar 

  84. CDMS-II collaboration, Z. Ahmed et al., Dark matter search results from the CDMS II experiment, Science 327 (2010) 1619 [arXiv:0912.3592] [INSPIRE].

    Article  ADS  Google Scholar 

  85. DAMA and LIBRA collaborations, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].

    Article  ADS  Google Scholar 

  86. CoGeNT collaboration, C.E. Aalseth et al., Results from a search for light-mass dark matter with a P-type point contact germanium detector, Phys. Rev. Lett. 106 (2011) 131301 [arXiv:1002.4703] [INSPIRE].

    Article  ADS  Google Scholar 

  87. XENON100 collaboration, E. Aprile et al., Implications on inelastic dark matter from 100 live days of XENON100 data, Phys. Rev. D 84 (2011) 061101 [arXiv:1104.3121] [INSPIRE].

    ADS  Google Scholar 

  88. CMS collaboration, Search for heavy Majorana neutrinos in μ + μ +[μ μ ] and e + e +[e e ] events in pp collisions at \( \sqrt{s}=7\,TeV \), Phys. Lett. B 717 (2012) 109 [arXiv:1207.6079] [INSPIRE].

    ADS  Google Scholar 

  89. ATLAS collaboration, Search for Majorana neutrino production in pp collisions at \( \sqrt{s}=7\,TeV \) indimuonfinalstateswiththeATLASdetector,ATLAS-CONF-2012-139(2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina De Romeri.

Additional information

ArXiv ePrint: 1209.3891

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Romeri, V., Hirsch, M. Sneutrino dark matter in low-scale seesaw scenarios. J. High Energ. Phys. 2012, 106 (2012). https://doi.org/10.1007/JHEP12(2012)106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2012)106

Keywords

Navigation