Abstract
In this paper, we study an extension of the standard model with a vector-like generation of leptons. This model provides a viable dark matter candidate and a possibility to enhance the Higgs decay rate into a pair of photons. We evaluate constraints from electroweak precision tests and from vacuum stability, and find that the latter provide an upper limit on the lepton Yukawa couplings. A large enhancement of the Higgs di-photon rate can therefore only be obtained when the mass of the lightest charged lepton is close to the LEP limit. The relic density constraint suggests a co-annihilation scenario with a small mass difference between the lightest charged and neutral leptons, which also weakens the LEP limit on the lightest charged lepton mass and allows for larger Higgs di-photon decay rates. Cross sections for direct detection of the dark matter candidate are calculated, and prospects for detecting the new particles at the LHC are discussed briefly.
This is a preview of subscription content, access via your institution.
References
ATLAS collaboration, Observation of an Excess of Events in the Search for the Standard Model Higgs boson with the ATLAS detector at the LHC, ATLAS-CONF-2012-093 (2012).
J. Incandela, Stauts of the CMS SM Higgs search, talk given at the seminar Latest update in the search for the Higgs boson, CERN, Geneva, 4 July 2012 [http://indico.cern.ch/conferenceDisplay.py?confId=197461].
ATLAS collaboration, Search for the Standard Model Higgs boson in the diphoton decay channel with 4.9 fb −1 of pp collisions at \( \sqrt{s}=7\;TeV \) with ATLAS, Phys. Rev. Lett. 108 (2012)111803 [arXiv:1202.1414] [INSPIRE].
CMS collaboration, Search for the standard model Higgs boson decaying into two photons in pp collisions at \( \sqrt{s}=7\;TeV \), Phys. Lett. B 710 (2012) 403 [arXiv:1202.1487] [INSPIRE].
ATLAS collaboration, Observation of an excess of events in the search for the Standard Model Higgs boson in the gamma-gamma channel with the ATLAS detector, ATLAS-CONF-2012-091 (2012).
CMS collaboration, Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, HIG-12-015.
P.P. Giardino, K. Kannike, M. Raidal and A. Strumia, Is the resonance at 125 GeV the Higgs boson?, Phys. Lett. B 718 (2012) 469 [arXiv:1207.1347] [INSPIRE].
I. Low, J. Lykken and G. Shaughnessy, Have We Observed the Higgs (Imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].
J. Ellis and T. You, Global Analysis of the Higgs Candidate with Mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].
J. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First Glimpses at Higgs’ face, arXiv:1207.1717 [INSPIRE].
D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs After the Discovery: A Status Report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].
J. Cao, Z. Heng, J.M. Yang and J. Zhu, Status of low energy SUSY models confronted with the LHC 125 GeV Higgs data, JHEP 10 (2012) 079 [arXiv:1207.3698] [INSPIRE].
H.-S. Lee and A. Soni, Fourth Generation Parity, arXiv:1206.6110 [INSPIRE].
K. Ishiwata and M.B. Wise, Higgs Properties and Fourth Generation Leptons, Phys. Rev. D 84 (2011) 055025 [arXiv:1107.1490] [INSPIRE].
J.M. Arnold, P. Fileviez Perez, B. Fornal and S. Spinner, On Higgs Decays, Baryon Number Violation and SUSY at the LHC, Phys. Rev. D 85 (2012) 115024 [arXiv:1204.4458] [INSPIRE].
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
O. Eberhardt, A. Lenz and J. Rohrwild, Less space for a new family of fermions, Phys. Rev. D 82 (2010) 095006 [arXiv:1005.3505] [INSPIRE].
G. Cynolter and E. Lendvai, Electroweak Precision Constraints on Vector-like Fermions, Eur. Phys. J. C 58 (2008) 463 [arXiv:0804.4080] [INSPIRE].
Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
Particle Data Group collaboration, C. Amsler et al., Review of Particle Physics, Phys. Lett. B 667 (2008) 1 [INSPIRE].
A. Djouadi, The Anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].
M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].
A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion, Phys. Rev. D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].
M. Carena, I. Low and C.E. Wagner, Implications of a Modified Higgs to Diphoton Decay Width, JHEP 08 (2012) 060 [arXiv:1206.1082] [INSPIRE].
M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].
J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].
M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light Stau Phenomenology and the Higgs γγ Rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].
R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stal, G. Weiglein and L. Zeune, Confronting the MSSM and the NMSSM with the Discovery of a Signal in the two Photon Channel at the LHC, Eur. Phys. J. C 72 (2012) 2171 [arXiv:1207.1096] [INSPIRE].
H. An, T. Liu and L.-T. Wang, 125 GeV Higgs Boson, Enhanced Di-photon Rate and Gauged U(1)P Q -Extended MSSM, Phys. Rev. D 86 (2012) 075030 [arXiv:1207.2473] [INSPIRE].
M.R. Buckley and D. Hooper, Are There Hints of Light Stops in Recent Higgs Search Results?, Phys. Rev. D 86 (2012) 075008 [arXiv:1207.1445] [INSPIRE].
A. Akeroyd and S. Moretti, Enhancement of H → γγ from doubly charged scalars in the Higgs Triplet Model, Phys. Rev. D 86 (2012) 035015 [arXiv:1206.0535] [INSPIRE].
B. Batell, S. Gori and L.-T. Wang, Exploring the Higgs Portal with 10/fb at the LHC, JHEP 06 (2012) 172 [arXiv:1112.5180] [INSPIRE].
A. Arhrib, R. Benbrik, M. Chabab, G. Moultaka and L. Rahili, Higgs boson decay into 2 photons in the type II Seesaw Model, JHEP 04 (2012) 136 [arXiv:1112.5453] [INSPIRE].
A. Arhrib, R. Benbrik and N. Gaur, H → γγ in Inert Higgs Doublet Model, Phys. Rev. D 85 (2012) 095021 [arXiv:1201.2644] [INSPIRE].
L. Wang and X.-F. Han, LHC diphoton Higgs signal and top quark forward-backward asymmetry in quasi-inert Higgs doublet model, JHEP 05 (2012) 088 [arXiv:1203.4477] [INSPIRE].
W.-F. Chang, J.N. Ng and J.M. Wu, Constraints on New Scalars from the LHC 125 GeV Higgs Signal, Phys. Rev. D 86 (2012) 033003 [arXiv:1206.5047] [INSPIRE].
C.-W. Chiang and K. Yagyu, Higgs boson decays to γγ and Zγ in models with Higgs extensions, arXiv:1207.1065 [INSPIRE].
F. Goertz, U. Haisch and M. Neubert, Bounds on Warped Extra Dimensions from a Standard Model-like Higgs Boson, Phys. Lett. B 713 (2012) 23 [arXiv:1112.5099] [INSPIRE].
N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].
U. Ellwanger, A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM, JHEP 03 (2012) 044 [arXiv:1112.3548] [INSPIRE].
J.F. Gunion, Y. Jiang and S. Kraml, Could two NMSSM Higgs bosons be present near 125 GeV?, Phys. Rev. D 86 (2012) 071702 [arXiv:1207.1545] [INSPIRE].
V. Barger, M. Ishida and W.-Y. Keung, Flavor-Tuned 125 GeV SUSY Higgs Boson at the LHC: MSSM and NATURAL SUSY TESTS, arXiv:1207.0779 [INSPIRE].
J.S. Gainer, W.-Y. Keung, I. Low and P. Schwaller, Looking for a light Higgs boson in the Zγ→ℓℓγ channel, Phys. Rev. D 86 (2012) 033010 [arXiv:1112.1405][INSPIRE].
M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].
M. Lindner, Implications of Triviality for the Standard Model, Z. Phys. C 31 (1986) 295 [INSPIRE].
J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].
F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].
G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori and A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].
W.-Y. Keung and P. Schwaller, Long Lived Fourth Generation and the Higgs, JHEP 06 (2011) 054 [arXiv:1103.3765] [INSPIRE].
J. Angle et al., Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment, Phys. Rev. Lett. 101 (2008) 091301 [arXiv:0805.2939] [INSPIRE].
M. Heikinheimo, K. Tuominen and J. Virkajarvi, Invisible Higgs and Dark Matter, JHEP 07 (2012) 117 [arXiv:1203.5766] [INSPIRE].
Y.S. Jeong, C. Kim and M.H. Reno, Majorana Dark Matter Cross sections with Nucleons at High Energies, Phys. Rev. D 86 (2012) 094025 [arXiv:1207.1526] [INSPIRE].
G. Bélanger, F. Boudjema, P. Brun, A. Pukhov, S. Rosier-Lees, P. Salati and A. Semenov, Indirect search for dark matter with MicrOMEGAs2.4, Comput. Phys. Commun. 182 (2011) 842 [arXiv:1004.1092] [INSPIRE].
G. Servant and T.M. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].
I. Low, P. Schwaller, G. Shaughnessy and C.E. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].
XENON100 collaboration, E. Aprile et al., Dark Matter Results from 100 Live Days of XENON100 Data, Phys. Rev. Lett. 107 (2011) 131302 [arXiv:1104.2549] [INSPIRE].
XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].
COUPP collaboration, E. Behnke et al., First Dark Matter Search Results from a 4-kg CF 3 I Bubble Chamber Operated in a Deep Underground Site, Phys. Rev. D 86 (2012) 052001 [arXiv:1204.3094] [INSPIRE].
CMS collaboration, Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy, Phys. Rev. Lett. 108 (2012) 261803 [arXiv:1204.0821] [INSPIRE].
J.R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, Probing for Invisible Higgs Decays with Global Fits, JHEP 09 (2012) 126 [arXiv:1205.6790] [INSPIRE].
N. Arkani-Hamed, K. Blum, R.T. D’Agnolo and J. Fan, 2:1 for Naturalness at the LHC?, arXiv:1207.4482 [INSPIRE].
R. Dermisek, Insensitive Unification of Gauge Couplings, Phys. Lett. B 713 (2012) 469 [arXiv:1204.6533] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1207.4235
Rights and permissions
About this article
Cite this article
Joglekar, A., Schwaller, P. & Wagner, C.E.M. Dark Matter and enhanced h → γγ rate from vector-like Leptons. J. High Energ. Phys. 2012, 64 (2012). https://doi.org/10.1007/JHEP12(2012)064
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2012)064
Keywords
- Higgs Physics
- Beyond Standard Model
- Cosmology of Theories beyond the SM