Skip to main content

Bi-galileon theory I: motivation and formulation

Abstract

We introduce bi-galileon theory, the generalisation of the single galileon model introduced by Nicolis et al. The theory contains two coupled scalar fields and is described by a Lagrangian that is invariant under Galilean shifts in those fields. This paper is the first of two, and focuses on the motivation and formulation of the theory. We show that the boundary effective theory of the cascading cosmology model corresponds to a bi-galileon theory in the decoupling limit, and argue that this is to be expected for co-dimension 2 braneworld models exhibiting infra-red modification of gravity. We then generalise this, by constructing the most general bi-galileon Lagrangian. By coupling one of the galileons to the energy-momentum tensor, we pitch this as a modified gravity theory in which the modifications to General Relativity are encoded in the dynamics of the two galileons. We initiate a study of phenomenology by looking at maximally symmetric vacua and their stability, developing elegant geometric techniques that trivially explain why some of the vacua have to be unstable in certain cases (eg DGP). A detailed study of phenomenology appears in our companion paper.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    U.J. Le Verrier, Theorie du mouvement de Mercure, Annales de l’ Observatoir lmpirial de Paris 76 (1859) 195.

    Google Scholar 

  2. [2]

    A. Einstein, The field equations of gravitation, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1915 (1915) 844 [SPIRES].

    Google Scholar 

  3. [3]

    A. Einstein, Explanation of the perihelion motion of Mercury from the general theory of relativity, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1915 (1915) 831 [SPIRES].

    Google Scholar 

  4. [4]

    A. Einstein, On the general theory of relativity, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1915 (1915) 778 [Addendum ibid. 1915 (1915) 799] [SPIRES].

    Google Scholar 

  5. [5]

    V.C. Rubin, N. Thonnard and W.K. Ford, Jr., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R = 4kpc/to UGC 2885/R = 122kpc/, Astrophys. J. 238 (1980) 471 [SPIRES].

    Article  ADS  Google Scholar 

  6. [6]

    Supernova Search Team collaboration, A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201] [SPIRES].

    Article  ADS  Google Scholar 

  7. [7]

    Supernova Search Team collaboration, A.G. Riess et al., Type Ia supernova discoveries at z > 1 from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution, Astrophys. J. 607 (2004) 665 [astro-ph/0402512] [SPIRES].

    Article  ADS  Google Scholar 

  8. [8]

    Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Ω and Λ from 42 high-redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [SPIRES].

    Article  ADS  Google Scholar 

  9. [9]

    WMAP collaboration, D.N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: Implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377 [astro-ph/0603449] [SPIRES].

    Article  ADS  Google Scholar 

  10. [10]

    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [SPIRES].

    Article  ADS  Google Scholar 

  11. [11]

    E.J. Copeland, M. Sami and S. Tsujikawa, Dynamics of dark energy, Int. J. Mod. Phys. D 15 (2006) 1753 [hep-th/0603057] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  12. [12]

    D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. 648 (2006) L109 [astro-ph/0608407] [SPIRES].

    Article  ADS  Google Scholar 

  13. [13]

    M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [SPIRES].

    ADS  MathSciNet  Google Scholar 

  14. [14]

    H. van Dam and M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields, Nucl. Phys. B 22 (1970) 397 [SPIRES].

    ADS  Google Scholar 

  15. [15]

    V.I. Zakharov, Linearized gravitation theory and the graviton mass, JETP Lett. 12 (1970) 312 [Pisma Zh. Eksp. Teor. Fiz. 12 (1970) 447] [SPIRES].

    ADS  Google Scholar 

  16. [16]

    A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [SPIRES].

    ADS  Google Scholar 

  17. [17]

    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D6 (1972) 3368 [SPIRES].

    ADS  Google Scholar 

  18. [18]

    C. Deffayet and J.-W. Rombouts, Ghosts, strong coupling and accidental symmetries in massive gravity, Phys. Rev. D 72 (2005) 044003 [gr-qc/0505134] [SPIRES].

    ADS  Google Scholar 

  19. [19]

    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [SPIRES].

    ADS  Google Scholar 

  20. [20]

    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with sub-millimeter dimensions and TeV scale quantum gravity, Phys. Rev. D 59 (1999) 086004 [hep-ph/9807344] [SPIRES].

    ADS  Google Scholar 

  21. [21]

    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [SPIRES].

    ADS  Google Scholar 

  22. [22]

    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. [23]

    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. [24]

    G.R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  25. [25]

    I.I. Kogan, S. Mouslopoulos, A. Papazoglou, G.G. Ross and J. Santiago, A three three-brane universe: New phenomenology for the new millennium?, Nucl. Phys. B 584 (2000) 313 [hep-ph/9912552] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  26. [26]

    I.I. Kogan and G.G. Ross, Brane universe and multigravity: modification of gravity at large and small distances, Phys. Lett. B 485 (2000) 255 [hep-th/0003074] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  27. [27]

    R. Gregory, V.A. Rubakov and S.M. Sibiryakov, Opening up extra dimensions at ultra-large scales, Phys. Rev. Lett. 84 (2000) 5928 [hep-th/0002072] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  28. [28]

    R. Gregory, V.A. Rubakov and S.M. Sibiryakov, Gravity and antigravity in a brane world with metastable gravitons, Phys. Lett. B 489 (2000) 203 [hep-th/0003045] [SPIRES].

    ADS  Google Scholar 

  29. [29]

    A. Padilla, Ghost-free braneworld bigravity, Class. Quant. Grav. 21 (2004) 2899 [hep-th/0402079] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. [30]

    A. Padilla, Cosmic acceleration from asymmetric branes, Class. Quant. Grav. 22 (2005) 681 [hep-th/0406157] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. [31]

    A. Padilla, Infra-red modification of gravity from asymmetric branes, Class. Quant. Grav. 22 (2005) 1087 [hep-th/0410033] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. [32]

    C. Charmousis, R. Gregory and A. Padilla, Stealth acceleration and modified gravity, JCAP 10 (2007) 006 [arXiv:0706.0857] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  33. [33]

    K. Koyama, A. Padilla and F.P. Silva, Ghosts in asymmetric brane gravity and the decoupled stealth limit, JHEP 03 (2009) 134 [arXiv:0901.0713] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  34. [34]

    C. Deffayet, Cosmology on a brane in Minkowski bulk, Phys. Lett. B 502 (2001) 199 [hep-th/0010186] [SPIRES].

    ADS  Google Scholar 

  35. [35]

    C. Deffayet, G.R. Dvali and G. Gabadadze, Accelerated universe from gravity leaking to extra dimensions, Phys. Rev. D 65 (2002) 044023 [astro-ph/0105068] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  36. [36]

    C. Charmousis, R. Gregory, N. Kaloper and A. Padilla, DGP specteroscopy, JHEP 10 (2006) 066 [hep-th/0604086] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  37. [37]

    R. Gregory, N. Kaloper, R.C. Myers and A. Padilla, A new perspective on DGP gravity, JHEP 10 (2007) 069 [arXiv:0707.2666] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. [38]

    A. Padilla, A short review of ’DGP Specteroscopy’, J. Phys. A 40 (2007) 6827 [hep-th/0610093] [SPIRES].

    ADS  Google Scholar 

  39. [39]

    K. Koyama, Are there ghosts in the self-accelerating brane universe?, Phys. Rev. D 72 (2005) 123511 [hep-th/0503191] [SPIRES].

    ADS  Google Scholar 

  40. [40]

    D. Gorbunov, K. Koyama and S. Sibiryakov, More on ghosts in DGP model, Phys. Rev. D 73 (2006) 044016 [hep-th/0512097] [SPIRES].

    ADS  Google Scholar 

  41. [41]

    M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  42. [42]

    C. Deffayet, G.R. Dvali, G. Gabadadze and A.I. Vainshtein, Nonperturbative continuity in graviton mass versus perturbative discontinuity, Phys. Rev. D 65 (2002) 044026 [hep-th/0106001] [SPIRES].

    ADS  Google Scholar 

  43. [43]

    A. Nicolis and R. Rattazzi, Classical and quantum consistency of the DGP model, JHEP 06 (2004) 059 [hep-th/0404159] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  44. [44]

    G. Dvali, Predictive power of strong coupling in theories with large distance modified gravity, New J. Phys. 8 (2006) 326 [hep-th/0610013] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  45. [45]

    A. Nicolis, R. Rattazzi and E. Trincherini, The galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  46. [46]

    D.B. Fairlie, J. Govaerts and A. Morozov, Universal field equations with covariant solutions D.B. Fairlie, Nucl. Phys. B 373 (1992) 214 [hep-th/9110022] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  47. [47]

    D.B. Fairlie and J. Govaerts, Euler hierarchies and universal equations, J. Math. Phys. 33 (1992) 3543 [hep-th/9204074] [SPIRES].

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. [48]

    C. Burrage and D. Seery, Revisiting fifth forces in the Galileon model, JCA P 08 (2010) 011 [arXiv:1005.1927] [SPIRES].

    ADS  Google Scholar 

  49. [49]

    C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [SPIRES].

    ADS  Google Scholar 

  50. [50]

    C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [SPIRES].

    Google Scholar 

  51. [51]

    C. de Rham et al., Cascading gravity: extending the Dvali-Gabadadze-Porrati model to higher dimension, Phys. Rev. Lett. 100 (2008) 251603 [arXiv:0711.2072] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  52. [52]

    C. de Rham, S. Hofmann, J. Khoury and A.J. Tolley, Cascading gravity and degravitation, JCAP 02 (2008) 011 [arXiv:0712.2821] [SPIRES].

    Google Scholar 

  53. [53]

    C. de Rham, An introduction to cascading gravity and degravitation, Can. J. Phys. 87 (2009) 201 [arXiv:0810.0269] [SPIRES].

    Article  ADS  Google Scholar 

  54. [54]

    C. de Rham, J. Khoury and A.J. Tolley, Flat 3-brane with tension in cascading gravity, Phys. Rev. Lett. 103 (2009) 161601 [arXiv:0907.0473] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  55. [55]

    M. Minamitsuji, Self-accelerating solutions in cascading DGP braneworld, Phys. Lett. B 684 (2010) 92 [arXiv:0806.2390] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  56. [56]

    N. Agarwal, R. Bean, J. Khoury and M. Trodden, Cascading cosmology, Phys. Rev. D 81 (2010) 084020 [arXiv:0912.3798] [SPIRES].

    ADS  Google Scholar 

  57. [57]

    O. Corradini, K. Koyama and G. Tasinato, Induced gravity on intersecting brane-worlds Part I: Maximally symmetric solutions, Phys. Rev. D 77 (2008) 084006 [arXiv:0712.0385] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  58. [58]

    O. Corradini, K. Koyama and G. Tasinato, Induced gravity on intersecting brane-worlds Part II: Cosmology, Phys. Rev. D 78 (2008) 124002 [arXiv:0803.1850] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  59. [59]

    J.M. Cline, J. Descheneau, M. Giovannini and J. Vinet, Cosmology of codimension-two braneworlds, JHEP 06 (2003) 048 [hep-th/0304147] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  60. [60]

    J. Vinet and J.M. Cline, Can codimension-two branes solve the cosmological constant problem?, Phys. Rev. D 70 (2004) 083514 [hep-th/0406141] [SPIRES].

    ADS  Google Scholar 

  61. [61]

    Y. Aghababaie, C.P. Burgess, S.L. Parameswaran and F. Quevedo, Towards a naturally small cosmological constant from branes in 6D supergravity, Nucl. Phys. B 680 (2004) 389 [hep-th/0304256] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  62. [62]

    C.P. Burgess, Supersymmetric large extra dimensions and the cosmological constant: An update, Ann. Phys. 313 (2004) 283 [hep-th/0402200] [SPIRES].

    MathSciNet  Google Scholar 

  63. [63]

    C.P. Burgess, Towards a natural theory of dark energy: Supersymmetric large extra dimensions, AIP Conf. Proc. 743 (2005) 417 [hep-th/0411140] [SPIRES].

    Article  ADS  Google Scholar 

  64. [64]

    N. Kaloper and D. Kiley, Charting the landscape of modified gravity, JHEP 05 (2007) 045 [hep-th/0703190] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  65. [65]

    N. Kaloper, Brane induced gravity: Codimension-2, Mod. Phys. Lett. A 23 (2008) 781 [arXiv:0711.3210] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  66. [66]

    C. Charmousis, G. Kofinas and A. Papazoglou, The consistency of codimension-2 braneworlds and their cosmology, JCA P 01 (2010) 022 [arXiv:0907.1640] [SPIRES].

    ADS  Google Scholar 

  67. [67]

    C. Charmousis and A. Papazoglou, Properties of codimension-2 braneworlds in six-dimensional Lovelock theory, J. Phys. Conf. Ser. 189 (2009) 012007 [arXiv:0902.2174] [SPIRES].

    Article  ADS  Google Scholar 

  68. [68]

    C. Charmousis and A. Papazoglou, Self-properties of codimension-2 braneworlds, JHEP 07 (2008) 062 [arXiv:0804.2121] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  69. [69]

    C. Charmousis and R. Zegers, Einstein gravity on an even codimension brane, Phys. Rev. D 72 (2005) 064005 [hep-th/0502171] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  70. [70]

    C. Charmousis and R. Zegers, Matching conditions for a brane of arbitrary codimension, JHEP 08 (2005) 075 [hep-th/0502170] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  71. [71]

    E. Papantonopoulos, A. Papazoglou and V. Zamarias, Induced cosmology on a regularized brane in six-dimensional flux compactification, Nucl. Phys. B 797 (2008) 520 [arXiv:0707.1396] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  72. [72]

    E. Papantonopoulos, A. Papazoglou and V. Zamarias, Regularization of conical singularities in warped six-dimensional compactifications, JHEP 03 (2007) 002 [hep-th/0611311] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  73. [73]

    B. Cuadros-Melgar, E. Papantonopoulos, M. Tsoukalas and V. Zamarias, Black holes on thin 3-branes of codimension-2 and their extension into the bulk, Nucl. Phys. B 810 (2009) 246 [arXiv:0804.4459] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  74. [74]

    B. Cuadros-Melgar, E. Papantonopoulos, M. Tsoukalas and V. Zamarias, BTZ like-string on codimension-2 braneworlds in the thin brane limit, Phys. Rev. Lett. 100 (2008) 221601 [arXiv:0712.3232] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  75. [75]

    N. Arkani-Hamed, S. Dimopoulos, G. Dvali and G. Gabadadze, Non-local modification of gravity and the cosmological constant problem, hep-th/0209227 [SPIRES].

  76. [76]

    G. Dvali, S. Hofmann and J. Khoury, Degravitation of the cosmological constant and graviton width, Phys. Rev. D 76 (2007) 084006 [hep-th/0703027] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  77. [77]

    S.L. Dubovsky and V.A. Rubakov, Brane-induced gravity in more than one extra dimensions: Violation of equivalence principle and ghost, Phys. Rev. D 67 (2003) 104014 [hep-th/0212222] [SPIRES].

    ADS  Google Scholar 

  78. [78]

    G. Gabadadze and M. Shifman, Softly massive gravity, Phys. Rev. D 69 (2004) 124032 [hep-th/0312289] [SPIRES].

    ADS  Google Scholar 

  79. [79]

    A. Padilla, P.M. Saffin and S.-Y. Zhou, Bi-galileon theory II: phenomenology, arXiv:1008.3312 [SPIRES].

  80. [80]

    C. Deffayet, S. Deser and G. Esposito-Farese, Arbitrary p-form Galileons, Phys. Rev. D 82 (2010) 061501 [arXiv:1007.5278] [SPIRES].

    ADS  Google Scholar 

  81. [81]

    C. Deffayet, S. Deser and G. Esposito-Farese, Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D 80 (2009) 064015 [arXiv:0906.1967] [SPIRES].

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shuang-Yong Zhou.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Padilla, A., Saffin, P.M. & Zhou, SY. Bi-galileon theory I: motivation and formulation. J. High Energ. Phys. 2010, 31 (2010). https://doi.org/10.1007/JHEP12(2010)031

Download citation

Keywords

  • Large Extra Dimensions
  • Cosmology of Theories beyond the SM
  • Classical Theories of Gravity