Journal of High Energy Physics

, Volume 2015, Issue 12, pp 1–45 | Cite as

On the field-antifield (a)symmetry of the pure spinor superstring

  • Renann Lipinski Jusinskas
Open Access
Regular Article - Theoretical Physics


In this work, the DDF-like approach to the pure spinor cohomology is extended to the next ghost number level, the so called antifields. In a direct (supersymmetric) parallel to the bosonic string, some properties of the ghost number two cohomology are derived with the enlargement of the DDF algebra. Also, the DDF conjugates of the b ghost zero mode emerge naturally from the extended algebra and the physical state condition is discussed. Unlike the bosonic string case, the cohomology analysis of the pure spinor b ghost is restricted to BRST-closed states.


Superstrings and Heterotic Strings Superspaces 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B 56 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    W. Siegel, Superfields in higher dimensional space-time, Phys. Lett. B 80 (1979) 220 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Berkovits and O. Chandía, Massive superstring vertex operator in D = 10 superspace, JHEP 08 (2002) 040 [hep-th/0204121] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    N. Berkovits, Cohomology in the pure spinor formalism for the superstring, JHEP 09 (2000) 046 [hep-th/0006003] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Berkovits and D.Z. Marchioro, Relating the Green-Schwarz and pure spinor formalisms for the superstring, JHEP 01 (2005) 018 [hep-th/0412198] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    N. Berkovits, Twistor origin of the superstring, JHEP 03 (2015) 122 [arXiv:1409.2510] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  8. [8]
    N. Berkovits, Origin of the pure spinor and Green-Schwarz formalisms, JHEP 07 (2015) 091 [arXiv:1503.03080] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M.B. Green and J.H. Schwarz, Covariant description of superstrings, Phys. Lett. B 136 (1984) 367 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R.L. Jusinskas, Spectrum generating algebra for the pure spinor superstring, JHEP 10 (2014) 22 [arXiv:1406.1902] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    N. Berkovits and R. Lipinski Jusinskas, Light-cone analysis of the pure spinor formalism for the superstring, JHEP 08 (2014) 102 [arXiv:1406.2290] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    N. Berkovits and B.C. Vallilo, Consistency of super-Poincaré covariant superstring tree amplitudes, JHEP 07 (2000) 015 [hep-th/0004171] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Berkovits, Relating the RNS and pure spinor formalisms for the superstring, JHEP 08 (2001) 026 [hep-th/0104247] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    N. Berkovits and C.R. Mafra, Equivalence of two-loop superstring amplitudes in the pure spinor and RNS formalisms, Phys. Rev. Lett. 96 (2006) 011602 [hep-th/0509234] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP 10 (2013) 217 [arXiv:1308.6567] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Mikhailov, Pure spinors in AdS and Lie algebra cohomology, Lett. Math. Phys. 104 (2014) 1201 [arXiv:1207.2441] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    A. Mikhailov, Vertex operators of ghost number three in Type IIB supergravity, arXiv:1401.3783 [INSPIRE].
  18. [18]
    N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 09 (2001) 016 [hep-th/0105050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    L. Brink, M.B. Green and J.H. Schwarz, Ten-dimensional supersymmetric Yang-Mills theory with SO(8)-covariant light cone superfields, Nucl. Phys. B 223 (1983) 125 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM n-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].ADSGoogle Scholar
  21. [21]
    N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring, JHEP 09 (2004) 047 [hep-th/0406055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089 [hep-th/0509120] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    O. Chandía, The b ghost of the pure spinor formalism is nilpotent, Phys. Lett. B 695 (2011) 312 [arXiv:1008.1778] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    R. Lipinski Jusinskas, Nilpotency of the b ghost in the non-minimal pure spinor formalism, JHEP 05 (2013) 048 [arXiv:1303.3966] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    R.L. Jusinskas, Notes on the pure spinor b ghost, JHEP 07 (2013) 142 [arXiv:1306.1963] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    P.A. Grassi and P. Vanhove, Higher-loop amplitudes in the non-minimal pure spinor formalism, JHEP 05 (2009) 089 [arXiv:0903.3903] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    Y. Aisaka and N. Berkovits, Pure spinor vertex operators in Siegel gauge and loop amplitude regularization, JHEP 07 (2009) 062 [arXiv:0903.3443] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    T. Azevedo, On the \( \mathcal{N}=4 \) , D = 4 pure spinor measure factor, JHEP 03 (2015) 136 [arXiv:1412.5927] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  30. [30]
    E. Del Giudice, P. Di Vecchia and S. Fubini, General properties of the dual resonance model, Annals Phys. 70 (1972) 378 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institute of Physics AS CRPragueCzech Republic

Personalised recommendations