Journal of High Energy Physics

, 2014:119 | Cite as

Radiation from a D-dimensional collision of shock waves: proof of first order formula and angular factorisation at all orders

  • Flávio S. Coelho
  • Carlos Herdeiro
  • Marco O. P. Sampaio
Open Access
Regular Article - Theoretical Physics

Abstract

In two previous papers [1, 2] we have computed the inelasticity ϵ in a head-on collision of two D-dimensional Aichelburg-Sexl shock waves, using perturbation theory to calculate the geometry in the future light-cone of the collision. The first order result, obtained as an accurate numerical fit, yielded the remarkably simple formula ϵ1st order = 1/2 − 1/D. Here we show, analytically, that this result is exact in first order perturbation theory. Moreover, we clarify the relation between perturbation theory and an angular series of the inelasticity’s angular power around the symmetry axis of the collision (θ = 0, π). To establish these results, firstly, we show that at null infinity the angular dependence factorises order by order in perturbation theory, as a result of a hidden symmetry. Secondly, we show that a consistent truncation of the angular series in powers of sin2θ at some order \( \mathcal{O}(n) \) requires knowledge of the metric perturbations up to \( \mathcal{O}\left(n+1\right) \). In particular, this justifies the isotropy assumption used in first-order perturbation theory. We then compute, analytically, all terms that contribute to the inelasticity and depend linearly on the initial conditions (surface terms), including second order contributions.

Keywords

Large Extra Dimensions Black Holes 

References

  1. [1]
    C. Herdeiro, M.O.P. Sampaio and C. Rebelo, Radiation from a D-dimensional collision of shock waves: first order perturbation theory, JHEP 07 (2011) 121 [arXiv:1105.2298] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F.S. Coelho, C. Herdeiro and M.O.P. Sampaio, Radiation from a D-dimensional collision of shock waves: a remarkably simple fit formula, Phys. Rev. Lett. 108 (2012) 181102 [arXiv:1203.5355] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B 198 (1987) 61 [INSPIRE].
  4. [4]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    P.C. Argyres, S. Dimopoulos and J. March-Russell, Black holes and submillimeter dimensions, Phys. Lett. B 441 (1998) 96 [hep-th/9808138] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    T. Banks and W. Fischler, A model for high-energy scattering in quantum gravity, hep-th/9906038 [INSPIRE].
  10. [10]
    S.B. Giddings and S.D. Thomas, High-energy colliders as black hole factories: the end of short distance physics, Phys. Rev. D 65 (2002) 056010 [hep-ph/0106219] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett. 87 (2001) 161602 [hep-ph/0106295] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J.L. Feng and A.D. Shapere, Black hole production by cosmic rays, Phys. Rev. Lett. 88 (2002) 021303 [hep-ph/0109106] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    L. Anchordoqui and H. Goldberg, Experimental signature for black hole production in neutrino air showers, Phys. Rev. D 65 (2002) 047502 [hep-ph/0109242] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    R. Emparan, M. Masip and R. Rattazzi, Cosmic rays as probes of large extra dimensions and TeV gravity, Phys. Rev. D 65 (2002) 064023 [hep-ph/0109287] [INSPIRE].ADSGoogle Scholar
  15. [15]
    CMS collaboration, Search for microscopic black holes in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 04 (2012) 061 [arXiv:1202.6396] [INSPIRE].ADSGoogle Scholar
  16. [16]
    ATLAS collaboration, Search for TeV-scale gravity signatures in final states with leptons and jets with the ATLAS detector at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 716 (2012) 122 [arXiv:1204.4646] [INSPIRE].ADSGoogle Scholar
  17. [17]
    CMS collaboration, Search for microscopic black holes in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2013) 178 [arXiv:1303.5338] [INSPIRE].ADSGoogle Scholar
  18. [18]
    ATLAS collaboration, Search for quantum black hole production in high-invariant-mass lepton + jet final states using pp collisions at \( \sqrt{s}=8 \) TeV and the ATLAS detector, Phys. Rev. Lett. 112 (2014) 091804 [arXiv:1311.2006] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    V. Cardoso et al., NR/HEP: roadmap for the future, Class. Quant. Grav. 29 (2012) 244001 [arXiv:1201.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    V. Cardoso, L. Gualtieri, C. Herdeiro and U. Sperhake, Exploring new physics frontiers through numerical relativity, arXiv:1409.0014 [INSPIRE].
  21. [21]
    P.C. Aichelburg and R.U. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    H. Yoshino and Y. Nambu, High-energy headon collisions of particles and hoop conjecture, Phys. Rev. D 66 (2002) 065004 [gr-qc/0204060] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    H. Yoshino and Y. Nambu, Black hole formation in the grazing collision of high-energy particles, Phys. Rev. D 67 (2003) 024009 [gr-qc/0209003] [INSPIRE].ADSGoogle Scholar
  24. [24]
    H. Yoshino and V.S. Rychkov, Improved analysis of black hole formation in high-energy particle collisions, Phys. Rev. D 71 (2005) 104028 [Erratum ibid. D 77 (2008) 089905] [hep-th/0503171] [INSPIRE].
  25. [25]
    L. Álvarez-Gaumé, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric collision of two shock waves in AdS 5, JHEP 05 (2009) 060 [arXiv:0902.3046] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    K.A. Khan and R. Penrose, Scattering of two impulsive gravitational plane waves, Nature 229 (1971) 185 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    Y. Nutku and M. Halil, Colliding impulsive gravitational waves, Phys. Rev. Lett. 39 (1977) 1379 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P.D. D’Eath and P.N. Payne, Gravitational radiation in high speed black hole collisions. I. Perturbation treatment of the axisymmetric speed of light collision, Phys. Rev. D 46 (1992) 658 [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    P.D. D’Eath and P.N. Payne, Gravitational radiation in high speed black hole collisions. II. Reduction to two independent variables and calculation of the second order news function, Phys. Rev. D 46 (1992) 675 [INSPIRE].MathSciNetGoogle Scholar
  31. [31]
    P.D. D’Eath and P.N. Payne, Gravitational radiation in high speed black hole collisions. III. Results and conclusions, Phys. Rev. D 46 (1992) 694 [INSPIRE].ADSMathSciNetGoogle Scholar
  32. [32]
    P.D. D’Eath, High speed black hole encounters and gravitational radiation, Phys. Rev. D 18 (1978) 990 [INSPIRE].ADSMathSciNetGoogle Scholar
  33. [33]
    U. Sperhake, V. Cardoso, F. Pretorius, E. Berti and J.A. Gonzalez, The high-energy collision of two black holes, Phys. Rev. Lett. 101 (2008) 161101 [arXiv:0806.1738] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W.E. East and F. Pretorius, Ultrarelativistic black hole formation, Phys. Rev. Lett. 110 (2013) 101101 [arXiv:1210.0443] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L. Rezzolla and K. Takami, Black-hole production from ultrarelativistic collisions, Class. Quant. Grav. 30 (2013) 012001 [arXiv:1209.6138] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    F.S. Coelho, C. Herdeiro, C. Rebelo and M. Sampaio, Radiation from a D-dimensional collision of shock waves: higher-order setup and perturbation theory validity, Phys. Rev. D 87 (2013) 084034 [arXiv:1206.5839] [INSPIRE].ADSGoogle Scholar
  37. [37]
    L. Smarr, Gravitational radiation from distant encounters and from head-on collisions of black holes: the zero frequency limit, Phys. Rev. D 15 (1977) 2069 [INSPIRE].ADSGoogle Scholar
  38. [38]
    M.O.P. Sampaio, Radiation from a D-dimensional collision of shock waves: numerical methods, Int. J. Mod. Phys. A 28 (2013) 1340019 [arXiv:1306.0903] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    F.G. Friedlander, The wave equation on a curved space-time, Cambridge University Press, Cambridge U.K. (1975).MATHGoogle Scholar
  40. [40]
    K. Tanabe, S. Kinoshita and T. Shiromizu, Asymptotic flatness at null infinity in arbitrary dimensions, Phys. Rev. D 84 (2011) 044055 [arXiv:1104.0303] [INSPIRE].ADSGoogle Scholar
  41. [41]
    K. Tanabe, T. Shiromizu and S. Kinoshita, Angular momentum at null infinity in higher dimensions, Phys. Rev. D 85 (2012) 124058 [arXiv:1203.0452] [INSPIRE].ADSGoogle Scholar
  42. [42]
    F.S. Coelho, C. Herdeiro, C. Rebelo and M.O.P. Sampaio, Radiation from a D-dimensional collision of shock waves: an insight allowed by the D parameter, arXiv:1301.1073 [INSPIRE].
  43. [43]
    F.S. Coelho, C. Herdeiro, C. Rebelo and M.O.P. Sampaio, Radiation from a D-dimensional collision of shock waves: a summary of the first order results, Springer Proc. Math. Stat. 60 (2014) 189 [INSPIRE].CrossRefMathSciNetGoogle Scholar
  44. [44]
    F.S. Coelho, C. Herdeiro, C. Rebelo and M.O.P. Sampaio, Radiation from a D-dimensional collision of shock waves: numerics and a charged case, Springer Proc. Math. Stat. 60 (2014) 193 [INSPIRE].CrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Flávio S. Coelho
    • 1
  • Carlos Herdeiro
    • 1
  • Marco O. P. Sampaio
    • 1
  1. 1.Departamento de Física da Universidade de Aveiro and I3NAveiroPortugal

Personalised recommendations