Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
On Drell-Yan production of scalar leptoquarks coupling to heavy-quark flavours
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Drell-Yan production in third-generation gauge vector leptoquark models at NLO+PS in QCD

07 February 2023

Ulrich Haisch, Luc Schnell & Stefan Schulte

Resonant third-generation leptoquark signatures at the Large Hadron Collider

07 May 2021

Ulrich Haisch & Giacomo Polesello

Leptoquark toolbox for precision collider studies

21 May 2018

Ilja Doršner & Admir Greljo

Sensitivity of future hadron colliders to leptoquark pair production in the di-muon di-jets channel

22 February 2020

B. C. Allanach, Tyler Corbett & Maeve Madigan

Distinguishing signatures of scalar leptoquarks at hadron and muon colliders

15 October 2022

Priyotosh Bandyopadhyay, Anirban Karan, … Snehashis Parashar

Searches for third-generation scalar leptoquarks in s $$ \sqrt{s} $$ = 13 TeV pp collisions with the ATLAS detector

28 June 2019

The ATLAS collaboration, M. Aaboud, … L. Zwalinski

Scalar leptoquark pair production at the LHC: precision predictions in the era of flavour anomalies

18 February 2022

Christoph Borschensky, Benjamin Fuks, … Daniel Schwartländer

The leptoquark Hunter’s guide: large coupling

15 January 2019

Martin Schmaltz & Yi-Ming Zhong

Scalar Leptoquark Effects in the Lepton Flavor Violating Exclusive b → s ℓ i − ℓ j + $b \to s {\ell }_{i}^{-} {\ell }_{j}^{+}$ Decays

21 November 2018

Jin-Huan Sheng, Ru-Min Wang & Ya-Dong Yang

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 18 November 2022

On Drell-Yan production of scalar leptoquarks coupling to heavy-quark flavours

  • Ulrich Haisch1,
  • Luc Schnell  ORCID: orcid.org/0000-0003-2073-98171,2 &
  • Stefan Schulte1,2 

Journal of High Energy Physics volume 2022, Article number: 106 (2022) Cite this article

  • 76 Accesses

  • 3 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Given the hints of lepton-flavour non-universality in semi-leptonic B decays, leptoquark (LQ) models with sizeable couplings to heavy-quark flavours are enjoying a renaissance. While such models are subject to stringent constraints from low-energy experiments also bounds from non-resonant dilepton searches at the Large Hadron Collider (LHC) turn out to be phenomenologically relevant. Based on the latest LHC dilepton analyses corresponding to an integrated luminosity of around 140 fb−1 of proton-proton collisions at \( \sqrt{s} \) = 13 TeV, we present improved limits on the scalar LQ couplings that involve heavy-quark flavours and light or heavy dileptons. In particular, we show that effects beyond the leading order that are related to real QCD emissions are relevant in this context, since the inclusion of additional heavy-flavoured jets notably improves the exclusion limits that derive from the high-mass dilepton tails. The impact of electroweak corrections and interference effects between signal and background is also analysed. Within the POWHEG-BOX framework we provide a dedicated Monte Carlo code that allows for an on-the-fly signal event generation including all the LQ corrections considered in this article.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. ATLAS collaboration, Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 125 (2020) 051801 [arXiv:2002.12223] [INSPIRE].

  2. ATLAS collaboration, Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector, JHEP 11 (2020) 005 [Erratum JHEP 04 (2021) 142] [arXiv:2006.12946] [INSPIRE].

  3. CMS collaboration, Search for resonant and nonresonant new phenomena in high-mass dilepton final states at \( \sqrt{s} \) = 13 TeV, JHEP 07 (2021) 208 [arXiv:2103.02708] [INSPIRE].

  4. ATLAS collaboration, Search for New Phenomena in Final States with Two Leptons and One or No b-Tagged Jets at \( \sqrt{s} \) = 13 TeV Using the ATLAS Detector, Phys. Rev. Lett. 127 (2021) 141801 [arXiv:2105.13847] [INSPIRE].

  5. CMS collaboration, Measurement of the Drell-Yan forward-backward asymmetry at high dilepton masses in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 08 (2022) 063 [arXiv:2202.12327] [INSPIRE].

  6. CMS collaboration, Searches for additional Higgs bosons and vector leptoquarks in ττ final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CERN, Geneva, Switzerland (2022) [CMS-PAS-HIG-21-001].

  7. D.A. Faroughy, A. Greljo and J.F. Kamenik, Confronting lepton flavor universality violation in B decays with high-pT tau lepton searches at LHC, Phys. Lett. B 764 (2017) 126 [arXiv:1609.07138] [INSPIRE].

    Article  ADS  Google Scholar 

  8. N. Raj, Anticipating nonresonant new physics in dilepton angular spectra at the LHC, Phys. Rev. D 95 (2017) 015011 [arXiv:1610.03795] [INSPIRE].

  9. A. Greljo and D. Marzocca, High-pT dilepton tails and flavor physics, Eur. Phys. J. C 77 (2017) 548 [arXiv:1704.09015] [INSPIRE].

    Article  ADS  Google Scholar 

  10. B.C. Allanach, B. Gripaios and T. You, The case for future hadron colliders from B → K(*)μ+μ− decays, JHEP 03 (2018) 021 [arXiv:1710.06363] [INSPIRE].

    Article  ADS  Google Scholar 

  11. I. Doršner and A. Greljo, Leptoquark toolbox for precision collider studies, JHEP 05 (2018) 126 [arXiv:1801.07641] [INSPIRE].

    Article  ADS  Google Scholar 

  12. Y. Afik, J. Cohen, E. Gozani, E. Kajomovitz and Y. Rozen, Establishing a Search for b → sℓ+ℓ− Anomalies at the LHC, JHEP 08 (2018) 056 [arXiv:1805.11402] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Bansal, R.M. Capdevilla, A. Delgado, C. Kolda, A. Martin and N. Raj, Hunting leptoquarks in monolepton searches, Phys. Rev. D 98 (2018) 015037 [arXiv:1806.02370] [INSPIRE].

  14. B.C. Allanach, T. Corbett, M.J. Dolan and T. You, Hadron collider sensitivity to fat flavourful Z′s for \( {R}_{K^{\left(\ast \right)}} \), JHEP 03 (2019) 137 [arXiv:1810.02166] [INSPIRE].

  15. M. Schmaltz and Y.-M. Zhong, The leptoquark Hunter’s guide: large coupling, JHEP 01 (2019) 132 [arXiv:1810.10017] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Mandal, S. Mitra and S. Raz, \( {R}_{D^{\left(\ast \right)}} \) motivated \( \mathcal{S} \)1 leptoquark scenarios: Impact of interference on the exclusion limits from LHC data, Phys. Rev. D 99 (2019) 055028 [arXiv:1811.03561] [INSPIRE].

  17. M.J. Baker, J. Fuentes-Martín, G. Isidori and M. König, High-pT signatures in vector-leptoquark models, Eur. Phys. J. C 79 (2019) 334 [arXiv:1901.10480] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Choudhury, N. Kumar and A. Kundu, Search for an opposite sign muon-tau pair and a b-jet at the LHC in the context of flavor anomalies, Phys. Rev. D 100 (2019) 075001 [arXiv:1905.07982] [INSPIRE].

  19. A. Angelescu, D.A. Faroughy and O. Sumensari, Lepton Flavor Violation and Dilepton Tails at the LHC, Eur. Phys. J. C 80 (2020) 641 [arXiv:2002.05684] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Bhaskar, D. Das, T. Mandal, S. Mitra and C. Neeraj, Precise limits on the charge-2/3 U1 vector leptoquark, Phys. Rev. D 104 (2021) 035016 [arXiv:2101.12069] [INSPIRE].

  21. A. Crivellin, C.A. Manzari and M. Montull, Correlating nonresonant di-electron searches at the LHC to the Cabibbo-angle anomaly and lepton flavor universality violation, Phys. Rev. D 104 (2021) 115016 [arXiv:2103.12003] [INSPIRE].

  22. C. Cornella, D.A. Faroughy, J. Fuentes-Martin, G. Isidori and M. Neubert, Reading the footprints of the B-meson flavor anomalies, JHEP 08 (2021) 050 [arXiv:2103.16558] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Crivellin, D. Müller and L. Schnell, Combined constraints on first generation leptoquarks, Phys. Rev. D 103 (2021) 115023 [Addendum ibid. 104 (2021) 055020] [arXiv:2104.06417] [INSPIRE].

  24. A. Crivellin, M. Hoferichter, M. Kirk, C.A. Manzari and L. Schnell, First-generation new physics in simplified models: from low-energy parity violation to the LHC, JHEP 10 (2021) 221 [arXiv:2107.13569] [INSPIRE].

    Article  ADS  Google Scholar 

  25. B. Garland, S. Jäger, C.K. Khosa and S. Kvedaraite˙, Probing B anomalies via dimuon tails at a future collider, Phys. Rev. D 105 (2022) 115017 [arXiv:2112.05127] [INSPIRE].

  26. A. Crivellin, B. Fuks and L. Schnell, Explaining the hints for lepton flavour universality violation with three S2 leptoquark generations, JHEP 06 (2022) 169 [arXiv:2203.10111] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Azatov, F. Garosi, A. Greljo, D. Marzocca, J. Salko and S. Trifinopoulos, New physics in b → sμμ: FCC-hh or a muon collider?, JHEP 10 (2022) 149 [arXiv:2205.13552] [INSPIRE].

    Article  ADS  Google Scholar 

  28. BaBar collaboration, Evidence for an excess of \( \overline{B} \) → D(*)τ−\( \overline{\nu} \)τ decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

  29. BaBar collaboration, Measurement of an Excess of \( \overline{B} \) → D(*)τ−\( \overline{\nu} \)τ Decays and Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].

  30. LHCb collaboration, Measurement of the ratio of branching fractions \( \mathcal{B} \)(\( \overline{B} \)0 → D*+τ−\( \overline{\nu} \)τ)/\( \mathcal{B} \)(\( \overline{B} \)0 → D*+μ−\( \overline{\nu} \)μ), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].

  31. LHCb collaboration, Measurement of the ratio of the B0 → D*−τ+ντ and B0 → D*−μ+νμ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018) 171802 [arXiv:1708.08856] [INSPIRE].

  32. LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the B0 → D*−τ+ντ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].

  33. Belle collaboration, Measurement of \( \mathcal{R} \)(D) and \( \mathcal{R} \)(D*) with a semileptonic tagging method, arXiv:1904.08794 [INSPIRE].

  34. LHCb collaboration, Test of lepton universality with B0 → K*0ℓ+ℓ− decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].

  35. LHCb collaboration, Search for lepton-universality violation in B+ → K+ℓ+ℓ− decays, Phys. Rev. Lett. 122 (2019) 191801 [arXiv:1903.09252] [INSPIRE].

  36. Belle collaboration, Test of Lepton-Flavor Universality in B → K*ℓ+ℓ− Decays at Belle, Phys. Rev. Lett. 126 (2021) 161801 [arXiv:1904.02440] [INSPIRE].

  37. BELLE collaboration, Test of lepton flavor universality and search for lepton flavor violation in B → Kℓℓ decays, JHEP 03 (2021) 105 [arXiv:1908.01848] [INSPIRE].

  38. LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys. 18 (2022) 277 [arXiv:2103.11769] [INSPIRE].

  39. W. Altmannshofer, P.S. Bhupal Dev and A. Soni, \( {R}_{D^{\left(\ast \right)}} \) anomaly: A possible hint for natural supersymmetry with R-parity violation, Phys. Rev. D 96 (2017) 095010 [arXiv:1704.06659] [INSPIRE].

  40. S. Iguro and K. Tobe, R(D(*)) in a general two Higgs doublet model, Nucl. Phys. B 925 (2017) 560 [arXiv:1708.06176] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. M. Abdullah, J. Calle, B. Dutta, A. Flórez and D. Restrepo, Probing a simplified, W′ model of R(D(*)) anomalies using b-tags, τ leptons and missing energy, Phys. Rev. D 98 (2018) 055016 [arXiv:1805.01869] [INSPIRE].

  42. D. Marzocca, U. Min and M. Son, Bottom-Flavored Mono-Tau Tails at the LHC, JHEP 12 (2020) 035 [arXiv:2008.07541] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Endo, S. Iguro, T. Kitahara, M. Takeuchi and R. Watanabe, Non-resonant new physics search at the LHC for the b → cτν anomalies, JHEP 02 (2022) 106 [arXiv:2111.04748] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the Tevatron, Phys. Rev. Lett. 79 (1997) 341 [hep-ph/9704322] [INSPIRE].

  45. M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Pair production of scalar leptoquarks at the CERN LHC, Phys. Rev. D 71 (2005) 057503 [hep-ph/0411038] [INSPIRE].

  46. J.B. Hammett and D.A. Ross, NLO Leptoquark Production and Decay: The Narrow-Width Approximation and Beyond, JHEP 07 (2015) 148 [arXiv:1501.06719] [INSPIRE].

    Article  ADS  Google Scholar 

  47. T. Mandal, S. Mitra and S. Seth, Pair Production of Scalar Leptoquarks at the LHC to NLO Parton Shower Accuracy, Phys. Rev. D 93 (2016) 035018 [arXiv:1506.07369] [INSPIRE].

  48. C. Borschensky, B. Fuks, A. Kulesza and D. Schwartländer, Scalar leptoquark pair production at hadron colliders, Phys. Rev. D 101 (2020) 115017 [arXiv:2002.08971] [INSPIRE].

  49. L. Buonocore, U. Haisch, P. Nason, F. Tramontano and G. Zanderighi, Lepton-Quark Collisions at the Large Hadron Collider, Phys. Rev. Lett. 125 (2020) 231804 [arXiv:2005.06475] [INSPIRE].

  50. L. Buonocore, P. Nason, F. Tramontano and G. Zanderighi, Leptons in the proton, JHEP 08 (2020) 019 [arXiv:2005.06477] [INSPIRE].

    Article  ADS  Google Scholar 

  51. A. Greljo and N. Selimovic, Lepton-Quark Fusion at Hadron Colliders, precisely, JHEP 03 (2021) 279 [arXiv:2012.02092] [INSPIRE].

    Article  Google Scholar 

  52. U. Haisch and G. Polesello, Resonant third-generation leptoquark signatures at the Large Hadron Collider, JHEP 05 (2021) 057 [arXiv:2012.11474] [INSPIRE].

    Article  ADS  Google Scholar 

  53. C. Borschensky, B. Fuks, A. Kulesza and D. Schwartländer, Scalar leptoquark pair production at the LHC: precision predictions in the era of flavour anomalies, JHEP 02 (2022) 157 [arXiv:2108.11404] [INSPIRE].

    Article  ADS  Google Scholar 

  54. A. Alves, O.J.P. Éboli, G. Grilli Di Cortona and R.R. Moreira, Indirect and monojet constraints on scalar leptoquarks, Phys. Rev. D 99 (2019) 095005 [arXiv:1812.08632] [INSPIRE].

  55. P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

  56. S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    Article  ADS  Google Scholar 

  57. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. 11 (1975) 703] [INSPIRE].

  59. J.C. Pati and A. Salam, Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions, Phys. Rev. D 8 (1973) 1240 [INSPIRE].

  60. W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in Lepton-Quark Collisions, Phys. Lett. B 191 (1987) 442 [Erratum ibid. 448 (1999) 320] [INSPIRE].

  61. I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  63. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

  64. T. Hahn, S. Paßehr and C. Schappacher, FormCalc 9 and Extensions, PoS LL2016 (2016) 068 [J. Phys. Conf. Ser. 762 (2016) 012065] [arXiv:1604.04611] [INSPIRE].

  65. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

  66. H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

  68. S. Frixione, A General approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].

  69. A. Crivellin, C. Greub, D. Müller and F. Saturnino, Scalar Leptoquarks in Leptonic Processes, JHEP 02 (2021) 182 [arXiv:2010.06593] [INSPIRE].

    Article  ADS  Google Scholar 

  70. NNPDF collaboration, The path to proton structure at 1% accuracy, Eur. Phys. J. C 82 (2022) 428 [arXiv:2109.02653] [INSPIRE].

  71. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  72. P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B 446 (1999) 278 [hep-ph/9809321] [INSPIRE].

  73. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  74. M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  75. ATLAS collaboration, ATLAS b-jet identification performance and efficiency measurement with \( t\overline{t} \) events in pp collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 970 [arXiv:1907.05120] [INSPIRE].

  76. ATLAS collaboration, Muon reconstruction performance of the ATLAS detector in proton-proton collision data at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 76 (2016) 292 [arXiv:1603.05598] [INSPIRE].

  77. ATLAS collaboration, Performance of the ATLAS muon triggers in Run 2, 2020 JINST 15 P09015 [arXiv:2004.13447] [INSPIRE].

  78. E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  79. DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  80. CMS collaboration, Identification of hadronic tau lepton decays using a deep neural network, 2022 JINST 17 P07023 [arXiv:2201.08458] [INSPIRE].

  81. CMS collaboration, Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV, 2018 JINST 13 P05011 [arXiv:1712.07158] [INSPIRE].

  82. E. Bols, J. Kieseler, M. Verzetti, M. Stoye and A. Stakia, Jet Flavour Classification Using DeepJet, 2020 JINST 15 P12012 [arXiv:2008.10519] [INSPIRE].

  83. ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].

  84. ATLAS collaboration, Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, JHEP 10 (2020) 112 [arXiv:2006.05872] [INSPIRE].

  85. ATLAS collaboration, Search for new phenomena in pp collisions in final states with tau leptons, b-jets, and missing transverse momentum with the ATLAS detector, Phys. Rev. D 104 (2021) 112005 [arXiv:2108.07665] [INSPIRE].

  86. G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

  87. S. Alioli et al., The POWHEG BOX, (2022) http://powhegbox.mib.infn.it.

  88. J.C. Collins and D.E. Soper, Angular Distribution of Dileptons in High-Energy Hadron Collisions, Phys. Rev. D 16 (1977) 2219 [INSPIRE].

    Article  ADS  Google Scholar 

  89. D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: A Graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].

  90. H. Qu and L. Gouskos, ParticleNet: Jet Tagging via Particle Clouds, Phys. Rev. D 101 (2020) 056019 [arXiv:1902.08570] [INSPIRE].

  91. ATLAS collaboration, Direct constraint on the Higgs-charm coupling from a search for Higgs boson decays into charm quarks with the ATLAS detector, Eur. Phys. J. C 82 (2022) 717 [arXiv:2201.11428] [INSPIRE].

  92. CMS collaboration, Search for Higgs boson decay to a charm quark-antiquark pair in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, arXiv:2205.05550 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Max Planck Institute for Physics, Föhringer Ring 6, 80805, München, Germany

    Ulrich Haisch, Luc Schnell & Stefan Schulte

  2. Technische Universität München, Physik-Department, James-Franck-Strasse 1, 85748, Garching, Germany

    Luc Schnell & Stefan Schulte

Authors
  1. Ulrich Haisch
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Luc Schnell
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Stefan Schulte
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Luc Schnell.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2207.00356

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haisch, U., Schnell, L. & Schulte, S. On Drell-Yan production of scalar leptoquarks coupling to heavy-quark flavours. J. High Energ. Phys. 2022, 106 (2022). https://doi.org/10.1007/JHEP11(2022)106

Download citation

  • Received: 26 July 2022

  • Accepted: 02 November 2022

  • Published: 18 November 2022

  • DOI: https://doi.org/10.1007/JHEP11(2022)106

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Specific BSM Phenomenology
  • Specific QCD Phenomenology
  • Bottom Quarks
  • Higher-Order Perturbative Calculations
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.