Skip to main content

Advertisement

SpringerLink
Aspects of univalence in holographic axion models
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 07 November 2022

Aspects of univalence in holographic axion models

  • Matteo Baggioli  ORCID: orcid.org/0000-0001-9392-75071,2,
  • Sebastian Grieninger  ORCID: orcid.org/0000-0002-9523-58193,4,
  • Sašo Grozdanov5,6 &
  • …
  • Zhenkang Lu7 

Journal of High Energy Physics volume 2022, Article number: 32 (2022) Cite this article

  • 96 Accesses

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Univalent functions are complex, analytic (holomorphic) and injective functions that have been widely discussed in complex analysis. It was recently proposed that the stringent constraints that univalence imposes on the growth of functions combined with sufficient analyticity conditions could be used to derive rigorous lower and upper bounds on hydrodynamic dispersion relation, i.e., on all terms appearing in their convergent series representations. The results are exact bounds on physical quantities such as the diffusivity and the speed of sound. The purpose of this paper is to further explore these ideas, investigate them in concrete holographic examples, and work towards a better intuitive understanding of the role of univalence in physics. More concretely, we study diffusive and sound modes in a family of holographic axion models and offer a set of observations, arguments and tests that support the applicability of univalence methods for bounding physical observables described in terms of effective field theories. Our work provides insight into expected ‘typical’ regions of univalence, comparisons between the tightness of bounds and the corresponding exact values of certain quantities characterising transport, tests of relations between diffusion and bounds that involve chaotic pole-skipping, as well as tests of a condition that implies the conformal bound on the speed of sound and a complementary condition that implies its violation.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. R. Penco, An introduction to effective field theories, arXiv:2006.16285 [INSPIRE].

  2. A.V. Manohar, Introduction to effective field theories, arXiv:1804.05863 [INSPIRE].

  3. P. Kovtun, Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A 45 (2012) 473001 [arXiv:1205.5040] [INSPIRE].

  4. S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics, and the derivative expansion, Phys. Rev. D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].

  5. S. Grozdanov and J. Polonyi, Viscosity and dissipative hydrodynamics from effective field theory, Phys. Rev. D 91 (2015) 105031 [arXiv:1305.3670] [INSPIRE].

  6. M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, JHEP 09 (2017) 095 [arXiv:1511.03646] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. F.M. Haehl, R. Loganayagam and M. Rangamani, Topological sigma models & dissipative hydrodynamics, JHEP 04 (2016) 039 [arXiv:1511.07809] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  8. K. Jensen, N. Pinzani-Fokeeva and A. Yarom, Dissipative hydrodynamics in superspace, JHEP 09 (2018) 127 [arXiv:1701.07436] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. H. Liu and P. Glorioso, Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics, PoS TASI2017 (2018) 008 [arXiv:1805.09331] [INSPIRE].

  10. L. Landau and E. Lifshits, Fluid mechanics, Pergamon Press, New York, NY, U.S.A. (1987).

  11. P.C. Martin, O. Parodi and P.S. Pershan, Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids, Phys. Rev. A 6 (1972) 2401.

    Article  ADS  Google Scholar 

  12. P.D. Fleming and C. Cohen, Hydrodynamics of solids, Phys. Rev. B 13 (1976) 500.

    Article  ADS  Google Scholar 

  13. C. Cohen, P.D. Fleming and J.H. Gibbs, Hydrodynamics of amorphous solids with application to the light-scattering spectrum, Phys. Rev. B 13 (1976) 866.

    Article  ADS  Google Scholar 

  14. M. Baggioli and B. Goutéraux, Colloquium: hydrodynamics and holography of charge density wave phases, arXiv:2203.03298 [INSPIRE].

  15. B.I. Halperin and P.C. Hohenberg, Hydrodynamic theory of spin waves, Phys. Rev. 188 (1969) 898 [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Lucas and K.C. Fong, Hydrodynamics of electrons in graphene, J. Phys. Condens. Matter 30 (2018) 053001 [arXiv:1710.08425] [INSPIRE].

  17. M. Baggioli, M. Landry and A. Zaccone, Deformations, relaxation, and broken symmetries in liquids, solids, and glasses: a unified topological field theory, Phys. Rev. E 105 (2022) 024602 [arXiv:2101.05015] [INSPIRE].

  18. S. Grozdanov, D.M. Hofman and N. Iqbal, Generalized global symmetries and dissipative magnetohydrodynamics, Phys. Rev. D 95 (2017) 096003 [arXiv:1610.07392] [INSPIRE].

  19. S. Grozdanov and N. Poovuttikul, Generalized global symmetries in states with dynamical defects: the case of the transverse sound in field theory and holography, Phys. Rev. D 97 (2018) 106005 [arXiv:1801.03199] [INSPIRE].

  20. P. Glorioso and D.T. Son, Effective field theory of magnetohydrodynamics from generalized global symmetries, arXiv:1811.04879 [INSPIRE].

  21. L.V. Delacrétaz, D.M. Hofman and G. Mathys, Superfluids as higher-form anomalies, SciPost Phys. 8 (2020) 047 [arXiv:1908.06977] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. J. Armas and A. Jain, Viscoelastic hydrodynamics and holography, JHEP 01 (2020) 126 [arXiv:1908.01175] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. J. Armas and A. Jain, Hydrodynamics for charge density waves and their holographic duals, Phys. Rev. D 101 (2020) 121901 [arXiv:2001.07357] [INSPIRE].

  24. A. Gromov, A. Lucas and R.M. Nandkishore, Fracton hydrodynamics, Phys. Rev. Res. 2 (2020) 033124 [arXiv:2003.09429] [INSPIRE].

  25. M. Baggioli, G.L. Nave and P.W. Phillips, Anomalous diffusion and Noether’s second theorem, Phys. Rev. E 103 (2021) 032115 [arXiv:2006.10064] [INSPIRE].

  26. S. Sachdev, Quantum phase transitions, Cambridge University Press, Cambridge, U.K. (2011)

  27. A. Ioffe and A. Regel, Non-crystalline, amorphous and liquid electronic semiconductors, Prog. Semicond. 4 (1960) 237.

    Google Scholar 

  28. N.F. Mott, Conduction in non-crystalline systems IX. The minimum metallic conductivity, Phil. Mag. 26 (1972) 1015.

  29. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

  30. S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys. 11 (2015) 54 [arXiv:1405.3651] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Blake, Universal charge diffusion and the butterfly effect in holographic theories, Phys. Rev. Lett. 117 (2016) 091601 [arXiv:1603.08510] [INSPIRE].

  32. J. Zaanen, Planckian dissipation, minimal viscosity and the transport in cuprate strange metals, SciPost Phys. 6 (2019) 061 [arXiv:1807.10951] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. K. Trachenko and V.V. Brazhkin, Minimal quantum viscosity from fundamental physical constants, Sci. Adv. 6 (2020) eaba3747.

    Article  ADS  Google Scholar 

  34. P. Kovtun, G.D. Moore and P. Romatschke, The stickiness of sound: an absolute lower limit on viscosity and the breakdown of second order relativistic hydrodynamics, Phys. Rev. D 84 (2011) 025006 [arXiv:1104.1586] [INSPIRE].

  35. C. Chafin and T. Schäfer, Hydrodynamic fluctuations and the minimum shear viscosity of the dilute Fermi gas at unitarity, Phys. Rev. A 87 (2013) 023629 [arXiv:1209.1006] [INSPIRE].

  36. P. Kovtun, Fluctuation bounds on charge and heat diffusion, J. Phys. A 48 (2015) 265002 [arXiv:1407.0690] [INSPIRE].

  37. M. Martinez and T. Schäfer, Hydrodynamic tails and a fluctuation bound on the bulk viscosity, Phys. Rev. A 96 (2017) 063607 [arXiv:1708.01548] [INSPIRE].

  38. A. Lucas and J. Steinberg, Charge diffusion and the butterfly effect in striped holographic matter, JHEP 10 (2016) 143 [arXiv:1608.03286] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. T. Hartman, S.A. Hartnoll and R. Mahajan, Upper bound on diffusivity, Phys. Rev. Lett. 119 (2017) 141601 [arXiv:1706.00019] [INSPIRE].

  40. M. Baggioli and W.-J. Li, Universal bounds on transport in holographic systems with broken translations, SciPost Phys. 9 (2020) 007 [arXiv:2005.06482] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. N. Abbasi and M. Kaminski, Constraints on quasinormal modes and bounds for critical points from pole-skipping, JHEP 03 (2021) 265 [arXiv:2012.15820] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. A. Cherman, T.D. Cohen and A. Nellore, A bound on the speed of sound from holography, Phys. Rev. D 80 (2009) 066003 [arXiv:0905.0903] [INSPIRE].

  43. P.M. Hohler and M.A. Stephanov, Holography and the speed of sound at high temperatures, Phys. Rev. D 80 (2009) 066002 [arXiv:0905.0900] [INSPIRE].

  44. S. Grozdanov, A. Lucas, S. Sachdev and K. Schalm, Absence of disorder-driven metal-insulator transitions in simple holographic models, Phys. Rev. Lett. 115 (2015) 221601 [arXiv:1507.00003] [INSPIRE].

  45. S. Grozdanov, A. Lucas and K. Schalm, Incoherent thermal transport from dirty black holes, Phys. Rev. D 93 (2016) 061901 [arXiv:1511.05970] [INSPIRE].

  46. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. I. Kukuljan, S. Grozdanov and T. Prosen, Weak quantum chaos, Phys. Rev. B 96 (2017) 060301 [arXiv:1701.09147] [INSPIRE].

  48. T. Hartman, S.A. Hartnoll and R. Mahajan, Upper bound on diffusivity, Phys. Rev. Lett. 119 (2017) 141601 [arXiv:1706.00019] [INSPIRE].

  49. D. Areán, R.A. Davison, B. Goutéraux and K. Suzuki, Hydrodynamic diffusion and its breakdown near AdS2 quantum critical points, Phys. Rev. X 11 (2021) 031024 [arXiv:2011.12301] [INSPIRE].

  50. K. Trachenko, M. Baggioli, K. Behnia and V.V. Brazhkin, Universal lower bounds on energy and momentum diffusion in liquids, Phys. Rev. B 103 (2021) 014311 [arXiv:2009.01628] [INSPIRE].

  51. K. Trachenko, B. Monserrat, C.J. Pickard and V.V. Brazhkin, Speed of sound from fundamental physical constants, Sci. Adv. 6 (2020) eabc8662.

    Article  ADS  Google Scholar 

  52. N. Abbasi and M. Kaminski, Characteristic momentum of Hydro+ and a bound on the enhancement of the speed of sound near the QCD critical point, Phys. Rev. D 106 (2022) 016004 [arXiv:2112.14747] [INSPIRE].

  53. S. Grozdanov, Bounds on transport from univalence and pole-skipping, Phys. Rev. Lett. 126 (2021) 051601 [arXiv:2008.00888] [INSPIRE].

  54. S. Grozdanov, P.K. Kovtun, A.O. Starinets and P. Tadić, Convergence of the gradient expansion in hydrodynamics, Phys. Rev. Lett. 122 (2019) 251601 [arXiv:1904.01018] [INSPIRE].

  55. S. Grozdanov, P.K. Kovtun, A.O. Starinets and P. Tadić, The complex life of hydrodynamic modes, JHEP 11 (2019) 097 [arXiv:1904.12862] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. Y. Bu and M. Lublinsky, All order linearized hydrodynamics from fluid-gravity correspondence, Phys. Rev. D 90 (2014) 086003 [arXiv:1406.7222] [INSPIRE].

  57. B. Withers, Short-lived modes from hydrodynamic dispersion relations, JHEP 06 (2018) 059 [arXiv:1803.08058] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  58. M.P. Heller, A. Serantes, M. Spaliński, V. Svensson and B. Withers, Convergence of hydrodynamic modes: insights from kinetic theory and holography, SciPost Phys. 10 (2021) 123 [arXiv:2012.15393] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. M.P. Heller, A. Serantes, M. Spaliński, V. Svensson and B. Withers, Hydrodynamic gradient expansion in linear response theory, Phys. Rev. D 104 (2021) 066002 [arXiv:2007.05524] [INSPIRE].

  60. S. Grozdanov, A.O. Starinets and P. Tadić, Hydrodynamic dispersion relations at finite coupling, JHEP 06 (2021) 180 [arXiv:2104.11035] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  61. M.P. Heller, A. Serantes, M. Spaliński, V. Svensson and B. Withers, Hydrodynamic gradient expansion diverges beyond Bjorken flow, Phys. Rev. Lett. 128 (2022) 122302 [arXiv:2110.07621] [INSPIRE].

  62. M. Baggioli, K.-Y. Kim, L. Li and W.-J. Li, Holographic axion model: a simple gravitational tool for quantum matter, Sci. China Phys. Mech. Astron. 64 (2021) 270001 [arXiv:2101.01892] [INSPIRE].

  63. L.V. Ahlfors, Conformal invariants: topics in geometric function theory, American Mathematical Society, Providence, RI, U.S.A. (1973).

  64. P. Duren, Univalent functions, Springer, New York, NY, U.S.A. (2010).

    MATH  Google Scholar 

  65. O. Lehto, Univalent functions and Teichmüller spaces, Springer, New York, NY, U.S.A. (2011).

    MATH  Google Scholar 

  66. Z. Nehari, The schwarzian derivative and Schlicht functions, Bull. Amer. Math. Soc. 55 (1949) 545.

    Article  MathSciNet  MATH  Google Scholar 

  67. D. Aharonov and U. Elias, Sufficient conditions for univalence of analytic functions, arXiv:1303.0982.

  68. K. Noshiro, On the theory of Schlicht functions, Hokkaido Math. J. 2 (1934) 129.

    Article  MATH  Google Scholar 

  69. S.E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935) 310.

    Article  MathSciNet  MATH  Google Scholar 

  70. L. Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985) 137.

    Article  MathSciNet  MATH  Google Scholar 

  71. T.H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962) 532.

    Article  MathSciNet  MATH  Google Scholar 

  72. P. Haldar, A. Sinha and A. Zahed, Quantum field theory and the Bieberbach conjecture, SciPost Phys. 11 (2021) 002 [arXiv:2103.12108] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. Y. Bu and M. Lublinsky, Linearized fluid/gravity correspondence: from shear viscosity to all order hydrodynamics, JHEP 11 (2014) 064 [arXiv:1409.3095] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  74. Y. Bu, M. Lublinsky and A. Sharon, Hydrodynamics dual to Einstein-Gauss-Bonnet gravity: all-order gradient resummation, JHEP 06 (2015) 162 [arXiv:1504.01370] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  75. T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP 05 (2014) 101 [arXiv:1311.5157] [INSPIRE].

    Article  ADS  Google Scholar 

  76. M. Baggioli and O. Pujolàs, Electron-phonon interactions, metal-insulator transitions, and holographic massive gravity, Phys. Rev. Lett. 114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].

  77. L. Alberte, M. Baggioli, A. Khmelnitsky and O. Pujolàs, Solid holography and massive gravity, JHEP 02 (2016) 114 [arXiv:1510.09089] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  78. A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  79. M. Ammon, M. Baggioli, S. Gray, S. Grieninger and A. Jain, On the hydrodynamic description of holographic viscoelastic models, Phys. Lett. B 808 (2020) 135691 [arXiv:2001.05737].

  80. M. Taylor and W. Woodhead, Inhomogeneity simplified, Eur. Phys. J. C 74 (2014) 3176 [arXiv:1406.4870] [INSPIRE].

    Article  ADS  Google Scholar 

  81. M.M. Caldarelli, A. Christodoulou, I. Papadimitriou and K. Skenderis, Phases of planar AdS black holes with axionic charge, JHEP 04 (2017) 001 [arXiv:1612.07214] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  82. R.A. Davison, Momentum relaxation in holographic massive gravity, Phys. Rev. D 88 (2013) 086003 [arXiv:1306.5792] [INSPIRE].

  83. R.A. Davison and B. Goutéraux, Momentum dissipation and effective theories of coherent and incoherent transport, JHEP 01 (2015) 039 [arXiv:1411.1062] [INSPIRE].

    Article  ADS  Google Scholar 

  84. M. Baggioli, M. Vasin, V.V. Brazhkin and K. Trachenko, Gapped momentum states, Phys. Rept. 865 (2020) 1 [arXiv:1904.01419] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  85. S. Grozdanov, A. Lucas and N. Poovuttikul, Holography and hydrodynamics with weakly broken symmetries, Phys. Rev. D 99 (2019) 086012 [arXiv:1810.10016] [INSPIRE].

  86. M. Baggioli, How small hydrodynamics can go, Phys. Rev. D 103 (2021) 086001 [arXiv:2010.05916] [INSPIRE].

  87. M. Stephanov and Y. Yin, Hydrodynamics with parametric slowing down and fluctuations near the critical point, Phys. Rev. D 98 (2018) 036006 [arXiv:1712.10305] [INSPIRE].

  88. L. Alberte, M. Ammon, A. Jiménez-Alba, M. Baggioli and O. Pujolàs, Holographic phonons, Phys. Rev. Lett. 120 (2018) 171602 [arXiv:1711.03100] [INSPIRE].

  89. A. Esposito, S. Garcia-Saenz, A. Nicolis and R. Penco, Conformal solids and holography, JHEP 12 (2017) 113 [arXiv:1708.09391] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  90. M. Ammon, M. Baggioli, S. Gray and S. Grieninger, Longitudinal sound and diffusion in holographic massive gravity, JHEP 10 (2019) 064 [arXiv:1905.09164] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  91. A. Donos, D. Martin, C. Pantelidou and V. Ziogas, Hydrodynamics of broken global symmetries in the bulk, JHEP 10 (2019) 218 [arXiv:1905.00398] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  92. M. Baggioli, S. Grieninger and L. Li, Magnetophonons & type-B Goldstones from hydrodynamics to holography, JHEP 09 (2020) 037 [arXiv:2005.01725].

    Article  MathSciNet  ADS  Google Scholar 

  93. M. Blake, R.A. Davison, S. Grozdanov and H. Liu, Many-body chaos and energy dynamics in holography, JHEP 10 (2018) 035 [arXiv:1809.01169] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  94. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [INSPIRE].

  95. S. Grozdanov, K. Schalm and V. Scopelliti, Black hole scrambling from hydrodynamics, Phys. Rev. Lett. 120 (2018) 231601 [arXiv:1710.00921] [INSPIRE].

  96. M. Blake, H. Lee and H. Liu, A quantum hydrodynamical description for scrambling and many-body chaos, JHEP 10 (2018) 127 [arXiv:1801.00010] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  97. S. Grozdanov, On the connection between hydrodynamics and quantum chaos in holographic theories with stringy corrections, JHEP 01 (2019) 048 [arXiv:1811.09641] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  98. M. Baggioli and S. Grieninger, Zoology of solid & fluid holography — Goldstone modes and phase relaxation, JHEP 10 (2019) 235 [arXiv:1905.09488] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  99. S.L. Grieninger, Non-equilibrium dynamics in Holography, Ph.D. thesis, Jena U., Jena, Germany (2020) [arXiv:2012.10109] [INSPIRE].

  100. H.-S. Jeong, K.-Y. Kim and Y.-W. Sun, Bound of diffusion constants from pole-skipping points: spontaneous symmetry breaking and magnetic field, JHEP 07 (2021) 105 [arXiv:2104.13084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  101. M. Kulaxizi and A. Parnachev, Holographic responses of fermion matter, Nucl. Phys. B 815 (2009) 125 [arXiv:0811.2262] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  102. P. Bedaque and A.W. Steiner, Sound velocity bound and neutron stars, Phys. Rev. Lett. 114 (2015) 031103 [arXiv:1408.5116] [INSPIRE].

  103. C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Breaking the sound barrier in AdS/CFT, Phys. Rev. D 94 (2016) 106008 [arXiv:1609.03480] [INSPIRE].

    Article  ADS  Google Scholar 

  104. A. Anabalon, T. Andrade, D. Astefanesei and R. Mann, Universal formula for the holographic speed of sound, Phys. Lett. B 781 (2018) 547 [arXiv:1702.00017] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  105. Y. Yang and P.-H. Yuan, Universal behaviors of speed of sound from holography, Phys. Rev. D 97 (2018) 126009 [arXiv:1705.07587] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  106. C. Ecker, C. Hoyos, N. Jokela, D. Rodríguez Fernández and A. Vuorinen, Stiff phases in strongly coupled gauge theories with holographic duals, JHEP 11 (2017) 031 [arXiv:1707.00521] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  107. E. Annala, T. Gorda, A. Kurkela, J. Nättilä and A. Vuorinen, Evidence for quark-matter cores in massive neutron stars, Nature Phys. 16 (2020) 907 [arXiv:1903.09121] [INSPIRE].

    Article  ADS  Google Scholar 

  108. T. Ishii, M. Järvinen and G. Nijs, Cool baryon and quark matter in holographic QCD, JHEP 07 (2019) 003 [arXiv:1903.06169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  109. S. Grozdanov and N. Kaplis, Constructing higher-order hydrodynamics: the third order, Phys. Rev. D 93 (2016) 066012 [arXiv:1507.02461] [INSPIRE].

  110. N. Abbasi and S. Tahery, Complexified quasinormal modes and the pole-skipping in a holographic system at finite chemical potential, JHEP 10 (2020) 076 [arXiv:2007.10024] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  111. A. Jansen and C. Pantelidou, Quasinormal modes in charged fluids at complex momentum, JHEP 10 (2020) 121 [arXiv:2007.14418] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  112. N. Wu, M. Baggioli and W.-J. Li, On the universality of AdS2 diffusion bounds and the breakdown of linearized hydrodynamics, JHEP 05 (2021) 014 [arXiv:2102.05810] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China

    Matteo Baggioli

  2. Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China

    Matteo Baggioli

  3. Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, 28049, Madrid, Spain

    Sebastian Grieninger

  4. Departamento de Física Teórica, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain

    Sebastian Grieninger

  5. Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, Scotland, EH8 9YL, UK

    Sašo Grozdanov

  6. Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, SI-1000, Ljubljana, Slovenia

    Sašo Grozdanov

  7. Department of Physics and Astronomy, Uppsala University, Box 516, 75120, Uppsala, Sweden

    Zhenkang Lu

Authors
  1. Matteo Baggioli
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Sebastian Grieninger
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Sašo Grozdanov
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Zhenkang Lu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Matteo Baggioli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2205.06076

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baggioli, M., Grieninger, S., Grozdanov, S. et al. Aspects of univalence in holographic axion models. J. High Energ. Phys. 2022, 32 (2022). https://doi.org/10.1007/JHEP11(2022)032

Download citation

  • Received: 02 June 2022

  • Revised: 27 September 2022

  • Accepted: 26 October 2022

  • Published: 07 November 2022

  • DOI: https://doi.org/10.1007/JHEP11(2022)032

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Holography and Hydrodynamics
  • Gauge-Gravity Correspondence
  • Field Theory Hydrodynamics
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.