Abstract
JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day (cpd), therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration to reduce at minimum the impact of natural radioactivity. We describe our efforts for an optimized experimental design, a careful material screening and accurate detector production handling, and a constant control of the expected results through a meticulous Monte Carlo simulation program. We show that all these actions should allow us to keep the background count rate safely below the target value of 10 Hz (i.e. ∼1 cpd accidental background) in the default fiducial volume, above an energy threshold of 0.7 MeV.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
JUNO collaboration, Neutrino physics with JUNO, J. Phys. G 43 (2016) 030401 [arXiv:1507.05613] [INSPIRE].
C. Cao et al., Mass production and characterization of 3-inch PMTs for the JUNO experiment, Nucl. Instrum. Meth. A 1005 (2021) 165347 [arXiv:2102.11538] [INSPIRE].
JUNO collaboration, Calibration strategy of the JUNO experiment, JHEP 03 (2021) 004 [arXiv:2011.06405] [INSPIRE].
JUNO and Daya Bay collaborations, Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector, Nucl. Instrum. Meth. A 988 (2021) 164823 [arXiv:2007.00314] [INSPIRE].
Hamamatsu photonics webpage, https://www.hamamatsu.com/.
Y. Wang et al., A new design of large area MCP-PMT for the next generation neutrino experiment, Nucl. Instrum. Meth. A 695 (2012) 113 [INSPIRE].
HZC photonics webpage, http://www.hzcphotonics.com/.
X. Li et al., Simulation of natural radioactivity backgrounds in the JUNO central detector, Chin. Phys. C 40 (2016) 026001 [arXiv:1505.03215] [INSPIRE].
T. Adam et al., The OPERA experiment target tracker, Nucl. Instrum. Meth. A 577 (2007) 523 [physics/0701153] [INSPIRE].
JUNO collaboration, JUNO conceptual design report, arXiv:1508.07166 [INSPIRE].
JUNO collaboration, Feasibility and physics potential of detecting 8B solar neutrinos at JUNO, Chin. Phys. C 45 (2021) 023004 [arXiv:2006.11760] [INSPIRE].
M. Sisti, Neutron activation analysis, https://indico.cern.ch/event/716552/.
C. Cao et al., A practical approach of high precision U and Th concentration measurement in acrylic, Nucl. Instrum. Meth. A 1004 (2021) 165377 [arXiv:2011.06817] [INSPIRE].
F. Perrot, Advantages and sensitivity of UV fs laser ablation HR-ICPMS technique for rare event experiment, https://indico.cern.ch/event/716552/sessions/310927/.
Y.P. Zhang et al., The development of 222Rn detectors for JUNO prototype, arXiv:1710.03401 [INSPIRE].
L. Xie et al., Developing the radium measurement system for the water Cherenkov detector of the Jiangmen Underground Neutrino Observatory, Nucl. Instrum. Meth. A 976 (2020) 164266 [arXiv:1906.06895] [INSPIRE].
JUNO collaboration, Radon activity measurement of JUNO nitrogen, 2020 JINST 15 P09001 [INSPIRE].
C. Mitsuda et al., Development of super-high sensitivity radon detector for the Super-Kamiokande detector, Nucl. Instrum. Meth. A 497 (2003) 414 [INSPIRE].
SuperNEMO collaboration, Radon emanation based material measurement and selection for the SuperNEMO double beta experiment, AIP Conf. Proc. 1672 (2015) 050002 [INSPIRE].
JUNO collaboration, The application of SNiPER to the JUNO simulation, J. Phys. Conf. Ser. 898 (2017) 042029 [arXiv:1702.05275] [INSPIRE].
J.H. Zou et al., SNiPER: an offline software framework for non-collider physics experiments, J. Phys. Conf. Ser. 664 (2015) 072053 [INSPIRE].
GEANT4 toolkit webpage, https://geant4.web.cern.ch/.
Daya Bay collaboration, A high precision calibration of the nonlinear energy response at Daya Bay, Nucl. Instrum. Meth. A 940 (2019) 230 [arXiv:1902.08241] [INSPIRE].
Borexino collaboration, First simultaneous precision spectroscopy of pp, 7Be, and pep solar neutrinos with Borexino phase-II, Phys. Rev. D 100 (2019) 082004 [arXiv:1707.09279] [INSPIRE].
KamLAND collaboration, First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [INSPIRE].
JUNO collaboration, The design and sensitivity of JUNO’s scintillator radiopurity pre-detector OSIRIS, arXiv:2103.16900 [INSPIRE].
SNO collaboration, The Sudbury neutrino observatory, Nucl. Instrum. Meth. A 449 (2000) 172 [nucl-ex/9910016] [INSPIRE].
X. Zhang et al., Study on the large area MCP-PMT glass radioactivity reduction, Nucl. Instrum. Meth. A 898 (2018) 67 [arXiv:1710.09965] [INSPIRE].
C. Cao et al., Mass production and characterization of 3-inch PMTs for the JUNO experiment, Nucl. Instrum. Meth. A 1005 (2021) 165347 [arXiv:2102.11538] [INSPIRE].
Y. Nakano et al., Measurement of the radon concentration in purified water in the Super-Kamiokande IV detector, Nucl. Instrum. Meth. A 977 (2020) 164297 [arXiv:1910.03823] [INSPIRE].
I. Blevis et al., Measurement of 222Rn dissolved in water at the Sudbury Neutrino Observatory, Nucl. Instrum. Meth. A 517 (2004) 139 [nucl-ex/0305022] [INSPIRE].
H.M. O’Keeffe, E. O’Sullivan and M.C. Chen, Scintillation decay time and pulse shape discrimination in oxygenated and deoxygenated solutions of linear alkylbenzene for the SNO+ experiment, Nucl. Instrum. Meth. A 640 (2011) 119 [arXiv:1102.0797] [INSPIRE].
K. Li et al., GDML based geometry management system for offline software in JUNO, Nucl. Instrum. Meth. A 908 (2018) 43 [INSPIRE].
S. Zhang, J.-S. Li, Y.-J. Su, Y.-M. Zhang, Z.-Y. Li and Z.-Y. You, A method for sharing dynamic geometry information in studies on liquid-based detectors, Nucl. Sci. Tech. 32 (2021) 21 [arXiv:2012.08727] [INSPIRE].
Z. You, K. Li, Y. Zhang, J. Zhu, T. Lin and W. Li, A ROOT based event display software for JUNO, 2018 JINST 13 T02002 [arXiv:1712.07603] [INSPIRE].
J. Zhu et al., A method of detector and event visualization with Unity in JUNO, 2019 JINST 14 T01007 [arXiv:1812.05304] [INSPIRE].
Z. Li et al., Event vertex and time reconstruction in large-volume liquid scintillator detectors, Nucl. Sci. Tech. 32 (2021) 49 [arXiv:2101.08901] [INSPIRE].
Z. Qian et al., Vertex and energy reconstruction in JUNO with machine learning methods, Nucl. Instrum. Meth. A 1010 (2021) 165527 [arXiv:2101.04839] [INSPIRE].
G. Huang et al., Improving the energy uniformity for large liquid scintillator detectors, Nucl. Instrum. Meth. A 1001 (2021) 165287 [arXiv:2102.03736] [INSPIRE].
GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
J.K. Tuli, Evaluated nuclear structure data file and related products, AIP Conf. Proc. 769 (2005) 265 [INSPIRE].
CUORE collaboration, Measurement of the two-neutrino double-beta decay half-life of 130Te with the CUORE-0 experiment, Eur. Phys. J. C 77 (2017) 13 [arXiv:1609.01666] [INSPIRE].
CUORE collaboration, The projected background for the CUORE experiment, Eur. Phys. J. C 77 (2017) 543 [arXiv:1704.08970] [INSPIRE].