Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Chern-Weil global symmetries and how quantum gravity avoids them

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 November 2021
  • Volume 2021, article number 53, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Chern-Weil global symmetries and how quantum gravity avoids them
Download PDF
  • Ben Heidenreich1,
  • Jacob McNamara2,
  • Miguel Montero2,
  • Matthew Reece2,
  • Tom Rudelius3,4 &
  • …
  • Irene Valenzuela2 
  • 351 Accesses

  • 3 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We draw attention to a class of generalized global symmetries, which we call “Chern-Weil global symmetries,” that arise ubiquitously in gauge theories. The Noether currents of these Chern-Weil global symmetries are given by wedge products of gauge field strengths, such as F2 ∧ H3 and tr(\( {F}_2^2 \)), and their conservation follows from Bianchi identities. As a result, they are not easy to break. However, it is widely believed that exact global symmetries are not allowed in a consistent theory of quantum gravity. As a result, any Chern-Weil global symmetry in a low-energy effective field theory must be either broken or gauged when the theory is coupled to gravity. In this paper, we explore the processes by which Chern-Weil symmetries may be broken or gauged in effective field theory and string theory. We will see that many familiar phenomena in string theory, such as axions, Chern-Simons terms, worldvolume degrees of freedom, and branes ending on or dissolving in other branes, can be interpreted as consequences of the absence of Chern-Weil symmetries in quantum gravity, suggesting that they might be general features of quantum gravity. We further discuss implications of breaking and gauging Chern-Weil symmetries for particle phenomenology and for boundary CFTs of AdS bulk theories. Chern-Weil global symmetries thus offer a unified framework for understanding many familiar aspects of quantum field theory and quantum gravity.

Article PDF

Download to read the full article text

Similar content being viewed by others

A Chern-Simons pandemic

Article Open access 26 July 2017

Exploring 2-group global symmetries

Article Open access 27 February 2019

Higher-group symmetries and weak gravity conjecture mixing

Article Open access 07 July 2022
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, arXiv:1309.4721 [INSPIRE].

  2. A. Kapustin and N. Seiberg, Coupling a QFT to a TQFT and duality, JHEP 04 (2014) 001 [arXiv:1401.0740] [INSPIRE].

    Article  ADS  Google Scholar 

  3. D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A.M. Polyakov, Quark confinement and topology of gauge groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].

  5. G. ’t Hooft, On the phase transition towards permanent quark confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].

  6. M. Nakahara, Geometry, topology and physics, Taylor & Francis, U.S.A. (2003).

  7. N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, Instanton operators in five-dimensional gauge theories, JHEP 03 (2015) 019 [arXiv:1412.2789] [INSPIRE].

    Article  ADS  Google Scholar 

  8. Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories, PTEP 2015 (2015) 043B06 [arXiv:1501.01031] [INSPIRE].

  9. P. Benetti Genolini and L. Tizzano, Instantons, symmetries and anomalies in five dimensions, JHEP 04 (2021) 188 [arXiv:2009.07873] [INSPIRE].

  10. F. Apruzzi, M. Dierigl and L. Lin, The fate of discrete 1-form symmetries in 6d, arXiv:2008.09117 [INSPIRE].

  11. L. Bhardwaj and S. Schäfer-Nameki, Higher-form symmetries of 6d and 5d theories, JHEP 02 (2021) 159 [arXiv:2008.09600] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. C. Cordova, T.T. Dumitrescu and K. Intriligator, 2-group global symmetries and anomalies in six-dimensional quantum field theories, JHEP 04 (2021) 252 [arXiv:2009.00138] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. B. Haghighat, C. Kozcaz, G. Lockhart and C. Vafa, Orbifolds of M-strings, Phys. Rev. D 89 (2014) 046003 [arXiv:1310.1185] [INSPIRE].

  14. H.-C. Kim, J. Kim, S. Kim, K.-H. Lee and J. Park, 6d strings and exceptional instantons, Phys. Rev. D 103 (2021) 025012 [arXiv:1801.03579] [INSPIRE].

  15. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  16. Y.B. Zeldovich, A new type of radioactive decay: gravitational annihilation of baryons, Phys. Lett. A 59 (1976) 254 [INSPIRE].

  17. Y.B. Zeldovich, A novel type of radioactive decay: gravitational baryon annihilation, Zh. Eksp. Teor. Fiz. 72 (1977) 18 [INSPIRE].

    ADS  Google Scholar 

  18. T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].

  19. T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

  20. D. Harlow and H. Ooguri, Constraints on symmetries from holography, Phys. Rev. Lett. 122 (2019) 191601 [arXiv:1810.05337] [INSPIRE].

  21. D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, Commun. Math. Phys. 383 (2021) 1669 [arXiv:1810.05338] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. D. Harlow and E. Shaghoulian, Global symmetry, Euclidean gravity, and the black hole information problem, JHEP 04 (2021) 175 [arXiv:2010.10539] [INSPIRE].

  23. Y. Chen and H.W. Lin, Signatures of global symmetry violation in relative entropies and replica wormholes, JHEP 03 (2021) 040 [arXiv:2011.06005] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. P.-S. Hsin, L.V. Iliesiu and Z. Yang, A violation of global symmetries from replica wormholes and the fate of black hole remnants, Class. Quant. Grav. 38 (2021) 194004 [arXiv:2011.09444] [INSPIRE].

  25. K. Yonekura, Topological violation of global symmetries in quantum gravity, arXiv:2011.11868 [INSPIRE].

  26. M. Montero, A.M. Uranga and I. Valenzuela, A Chern-Simons pandemic, JHEP 07 (2017) 123 [arXiv:1702.06147] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. C.G. Callan, Jr. and J.A. Harvey, Anomalies and fermion zero modes on strings and domain walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].

  28. J. Polchinski, Monopoles, duality, and string theory, Int. J. Mod. Phys. A 19S1 (2004) 145 [hep-th/0304042] [INSPIRE].

  29. T. Rudelius and S.-H. Shao, Topological operators and completeness of spectrum in discrete gauge theories, JHEP 12 (2020) 172 [arXiv:2006.10052] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. B. Heidenreich, J. McNamara, M. Montero, M. Reece, T. Rudelius and I. Valenzuela, Non-invertible global symmetries and completeness of the spectrum, JHEP 09 (2021) 203 [arXiv:2104.07036] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J. McNamara and C. Vafa, Cobordism classes and the swampland, arXiv:1909.10355 [INSPIRE].

  32. A.A. Belavin, A.M. Polyakov, A.S. Schwartz and Y.S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975) 85 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].

  34. J. Milnor and J. Stasheff, Characteristic classes, Annals of Mathematics Studies, Princeton University Press, Princeton U.S.A. (1974).

  35. C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the space of coupling constants and their dynamical applications I, SciPost Phys. 8 (2020) 001 [arXiv:1905.09315] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. Y. Tanizaki and M. Ünsal, Modified instanton sum in QCD and higher-groups, JHEP 03 (2020) 123 [arXiv:1912.01033] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. J. McNamara and C. Vafa, Baby universes, holography, and the swampland, arXiv:2004.06738 [INSPIRE].

  38. D. Marolf, Chern-Simons terms and the three notions of charge, in International Conference on Quantization, Gauge Theory, and Strings: Conference Dedicated to the Memory of ProfeSSOR Efim Fradkin, June 5–50, Moscow, Russia (2000) [hep-th/0006117] [INSPIRE].

  39. M. Berasaluce-Gonzalez, P.G. Cámara, F. Marchesano, D. Regalado and A.M. Uranga, Non-Abelian discrete gauge symmetries in 4d string models, JHEP 09 (2012) 059 [arXiv:1206.2383] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. D.N. Page, Classical stability of round and squashed seven spheres in eleven-dimensional Supergravity, Phys. Rev. D 28 (1983) 2976 [INSPIRE].

  41. M. Reece, Photon masses in the landscape and the Swampland, JHEP 07 (2019) 181 [arXiv:1808.09966] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. Y. Nomura, Spacetime and universal soft modes — Black holes and beyond, Phys. Rev. D 101 (2020) 066024 [arXiv:1908.05728] [INSPIRE].

  43. C. Córdova, K. Ohmori, and T. Rudelius, Symmetry breaking scales and weak gravity conjectures, in preparation.

  44. D. Harlow, Wormholes, emergent gauge fields, and the weak gravity conjecture, JHEP 01 (2016) 122 [arXiv:1510.07911] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. B. Heidenreich, M. Reece and T. Rudelius, Emergence of weak coupling at large distance in quantum gravity, Phys. Rev. Lett. 121 (2018) 051601 [arXiv:1802.08698] [INSPIRE].

  46. T.W. Grimm, E. Palti and I. Valenzuela, Infinite distances in field space and massless towers of states, JHEP 08 (2018) 143 [arXiv:1802.08264] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. B. Heidenreich, M. Reece and T. Rudelius, The weak gravity conjecture and emergence from an ultraviolet cutoff, Eur. Phys. J. C 78 (2018) 337 [arXiv:1712.01868] [INSPIRE].

    Article  ADS  Google Scholar 

  48. S.-J. Lee, W. Lerche and T. Weigand, Emergent strings, duality and weak coupling limits for two-form fields, arXiv:1904.06344 [INSPIRE].

  49. B. Heidenreich, M. Reece and T. Rudelius, Evidence for a sublattice weak gravity conjecture, JHEP 08 (2017) 025 [arXiv:1606.08437] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. B. Heidenreich, M. Reece and T. Rudelius, Sharpening the Weak Gravity Conjecture with Dimensional Reduction, JHEP 02 (2016) 140 [arXiv:1509.06374] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. M. Montero, G. Shiu and P. Soler, The weak gravity conjecture in three dimensions, JHEP 10 (2016) 159 [arXiv:1606.08438] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. S. Andriolo, D. Junghans, T. Noumi and G. Shiu, A tower weak gravity conjecture from infrared consistency, Fortsch. Phys. 66 (2018) 1800020 [arXiv:1802.04287] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].

  54. L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].

  55. N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].

  56. N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].

    Article  ADS  Google Scholar 

  57. F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, JHEP 09 (2014) 184 [arXiv:1404.3040] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A. Hebecker, P. Henkenjohann and L.T. Witkowski, What is the magnetic weak gravity conjecture for axions?, Fortsch. Phys. 65 (2017) 1700011 [arXiv:1701.06553] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].

  60. S. Bielleman, L.E. Ibáñez and I. Valenzuela, Minkowski 3-forms, flux string vacua, axion stability and naturalness, JHEP 12 (2015) 119 [arXiv:1507.06793] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  61. F. Carta, F. Marchesano, W. Staessens and G. Zoccarato, Open string multi-branched and Kähler potentials, JHEP 09 (2016) 062 [arXiv:1606.00508] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  62. A. Herraez, L.E. Ibáñez, F. Marchesano and G. Zoccarato, The type IIA flux potential, 4-forms and Freed-Witten anomalies, JHEP 09 (2018) 018 [arXiv:1802.05771] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. S. Lanza, F. Marchesano, L. Martucci and D. Sorokin, How many fluxes fit in an EFT?, JHEP 10 (2019) 110 [arXiv:1907.11256] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. S. Lanza, F. Marchesano, L. Martucci and I. Valenzuela, Swampland conjectures for strings and membranes, JHEP 02 (2021) 006 [arXiv:2006.15154] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. V. Kumar and W. Taylor, String universality in six dimensions, Adv. Theor. Math. Phys. 15 (2011) 325 [arXiv:0906.0987] [INSPIRE].

  66. A. Adams, O. DeWolfe and W. Taylor, String universality in ten dimensions, Phys. Rev. Lett. 105 (2010) 071601 [arXiv:1006.1352] [INSPIRE].

  67. A. Belin, C.A. Keller and A. Maloney, String universality for permutation orbifolds, Phys. Rev. D 91 (2015) 106005 [arXiv:1412.7159] [INSPIRE].

  68. I. García-Etxebarria, H. Hayashi, K. Ohmori, Y. Tachikawa and K. Yonekura, 8d gauge anomalies and the topological Green-Schwarz mechanism, JHEP 11 (2017) 177 [arXiv:1710.04218] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. H.-C. Kim, G. Shiu and C. Vafa, Branes and the swampland, Phys. Rev. D 100 (2019) 066006 [arXiv:1905.08261] [INSPIRE].

  70. H.-C. Kim, H.-C. Tarazi and C. Vafa, Four-dimensional \( \mathcal{N} \) = 4 SYM theory and the swampland, Phys. Rev. D 102 (2020) 026003 [arXiv:1912.06144] [INSPIRE].

  71. S. Katz, H.-C. Kim, H.-C. Tarazi and C. Vafa, Swampland constraints on 5d \( \mathcal{N} \) = 1 supergravity, JHEP 07 (2020) 080 [arXiv:2004.14401] [INSPIRE].

  72. M. Montero and C. Vafa, Cobordism conjecture, anomalies, and the string Lamppost principle, JHEP 01 (2021) 063 [arXiv:2008.11729] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. M. Cvetič, M. Dierigl, L. Lin and H.Y. Zhang, String universality and non-simply-connected gauge groups in 8d, Phys. Rev. Lett. 125 (2020) 211602 [arXiv:2008.10605] [INSPIRE].

  74. E. Witten, Dyons of charge eθ/2π, Phys. Lett. B 86 (1979) 283 [INSPIRE].

  75. M. Shifman, Advanced topics in quantum field theory: a lecture course, Cambridge University Press, Cambridge, U.K. (2012)

    Book  MATH  Google Scholar 

  76. E.J. Weinberg, Classical solutions in quantum field theory: solitons and instantons in high energy physics, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2012)[INSPIRE].

  77. O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. R. Jackiw, Charge and Mass Spectrum of Quantum Solitons, in the proceedings of the Gauge Theories and Modern Field Theory, September 26–27, Boston, U.S.A. (1975).

  79. N.H. Christ, A.H. Guth and E.J. Weinberg, Canonical formalism for gauge theories with application to monopole solutions, Nucl. Phys. B 114 (1976) 61 [INSPIRE].

  80. R. Jackiw, Quantum meaning of classical field theory, Rev. Mod. Phys. 49 (1977) 681 [INSPIRE].

  81. B. Julia and A. Zee, Poles with both magnetic and electric charges in nonabelian gauge theory, Phys. Rev. D 11 (1975) 2227 [INSPIRE].

  82. E. Lake, Higher-form symmetries and spontaneous symmetry breaking, arXiv:1802.07747 [INSPIRE].

  83. R.d. Sorkin, Kaluza-Klein monopole, Phys. Rev. Lett. 51 (1983) 87 [INSPIRE].

  84. D.J. Gross and M.J. Perry, Magnetic monopoles in Kaluza-Klein Theories, Nucl. Phys. B 226 (1983) 29 [INSPIRE].

  85. J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2007) [INSPIRE].

  86. R. Rohm and E. Witten, The antisymmetric tensor field in superstring theory, Ann. Phys. 170 (1986) 454 [INSPIRE].

  87. T. Banks, M. Dine, H. Dykstra and W. Fischler, Magnetic monopole solutions of string theory, Phys. Lett. B 212 (1988) 45 [INSPIRE].

  88. A. Sen, Kaluza-Klein dyons in string theory, Phys. Rev. Lett. 79 (1997) 1619 [hep-th/9705212] [INSPIRE].

    Article  ADS  Google Scholar 

  89. R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and t duality of Kaluza-Klein and h monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  90. Y. Imamura, Born-Infeld action and Chern-Simons term from Kaluza-Klein monopole in M-theory, Phys. Lett. B 414 (1997) 242 [hep-th/9706144] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  91. E. Witten, Small instantons in string theory, Nucl. Phys. B 460 (1996) 541 [hep-th/9511030] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. A. Hebecker and P. Henkenjohann, Gauge and gravitational instantons: From 3-forms and fermions to Weak Gravity and flat axion potentials, JHEP 09 (2019) 038 [arXiv:1906.07728] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. M. Green, M. Green, J. Schwarz and E. Witten, Superstring theory. Volume 2, loop amplitudes, anomalies and phenomenology, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1988).

  94. R. Minasian, S.L. Shatashvili and P. Vanhove, Closed strings from SO(8) Yang-Mills instantons, Nucl. Phys. B 613 (2001) 87 [hep-th/0106096] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. M.R. Douglas, Branes within branes, NATO Sci. Ser. C 520 (1999) 267 [hep-th/9512077] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  96. M.R. Douglas, Gauge fields and D-branes, J. Geom. Phys. 28 (1998) 255 [hep-th/9604198] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997) 47 [hep-th/9605033] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. J. McNamara, Gravitational solitons and completeness, arXiv:2108.02228 [INSPIRE].

  99. Y. Tachikawa and K. Yonekura, Why are fractional charges of orientifolds compatible with Dirac quantization?, SciPost Phys. 7 (2019) 058 [arXiv:1805.02772] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  100. M.R. Gaberdiel and M.B. Green, An SL(2, Z) anomaly in IIB supergravity and its F-theory interpretation, JHEP 11 (1998) 026 [hep-th/9810153] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  101. R. Minasian, S. Sasmal and R. Savelli, Discrete anomalies in supergravity and consistency of string backgrounds, JHEP 02 (2017) 025 [arXiv:1611.09575] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. A. Strominger, Massless black holes and conifolds in string theory, Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  103. B.R. Greene, String theory on Calabi-Yau manifolds, hep-th/9702155 [INSPIRE].

  104. J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: dualities and the B-field, Nucl. Phys. B 874 (2013) 413 [arXiv:1304.3137] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. D.S. Freed and M.J. Hopkins, Consistency of M-theory on non-orientable manifolds, Quart. J. Math. Oxford Ser. 72 (2021) 603 [arXiv:1908.09916] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  106. C.A. Scrucca and M. Serone, Anomalies and inflow on D-branes and O-planes, Nucl. Phys. B 556 (1999) 197 [hep-th/9903145] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. S. Cecotti and C. Vafa, Theta-problem and the string swampland, arXiv:1808.03483 [INSPIRE].

  108. C. Córdova, T.T. Dumitrescu and K. Intriligator, Exploring 2-group global symmetries, JHEP 02 (2019) 184 [arXiv:1802.04790] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. Y. Hidaka, M. Nitta and R. Yokokura, Higher-form symmetries and 3-group in axion electrodynamics, Phys. Lett. B 808 (2020) 135672 [arXiv:2006.12532] [INSPIRE].

  110. Y. Hidaka, M. Nitta and R. Yokokura, Global 3-group symmetry and ’t Hooft anomalies in axion electrodynamics, JHEP 01 (2021) 173 [arXiv:2009.14368] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  111. T.D. Brennan and C. Cordova, Axions, Higher-groups, and emergent symmetry, arXiv:2011.09600 [INSPIRE].

  112. O.J. Ganor and A. Hanany, Small E8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  113. N. Seiberg, Nontrivial fixed points of the renormalization group in six-dimensions, Phys. Lett. B 390 (1997) 169 [hep-th/9609161] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  114. N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  115. E. Witten, Phase transitions in M-theory and F-theory, Nucl. Phys. B 471 (1996) 195 [hep-th/9603150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. J.J. Heckman, D.R. Morrison and C. Vafa, On the classification of 6D SCFTs and Generalized ADE Orbifolds, JHEP 05 (2014) 028 [Erratum ibid. 06 (2015) 017] [arXiv:1312.5746] [INSPIRE].

  117. J.J. Heckman, D.R. Morrison, T. Rudelius and C. Vafa, Atomic classification of 6D SCFTs, Fortsch. Phys. 63 (2015) 468 [arXiv:1502.05405] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  118. L. Bhardwaj, Classification of 6d \( \mathcal{N} \) = (1, 0) gauge theories, JHEP 11 (2015) 002 [arXiv:1502.06594] [INSPIRE].

  119. J.J. Heckman, T. Rudelius and A. Tomasiello, Fission, fusion, and 6D RG flows, JHEP 02 (2019) 167 [arXiv:1807.10274] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  120. J.J. Heckman and T. Rudelius, Top down approach to 6D SCFTs, J. Phys. A 52 (2019) 093001 [arXiv:1805.06467] [INSPIRE].

  121. Y. Tachikawa, Frozen singularities in M and F-theory, JHEP 06 (2016) 128 [arXiv:1508.06679] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. L. Bhardwaj, D.R. Morrison, Y. Tachikawa and A. Tomasiello, The frozen phase of F-theory, JHEP 08 (2018) 138 [arXiv:1805.09070] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. L. Bhardwaj, Revisiting the classifications of 6d SCFTs and LSTs, JHEP 03 (2020) 171 [arXiv:1903.10503] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  124. A. Hanany and A. Zaffaroni, Branes and six-dimensional supersymmetric theories, Nucl. Phys. B 529 (1998) 180 [hep-th/9712145] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  125. F. Apruzzi, M. Fazzi, J.J. Heckman, T. Rudelius and H.Y. Zhang, General prescription for global U (1)’s in 6D SCFTs, Phys. Rev. D 101 (2020) 086023 [arXiv:2001.10549] [INSPIRE].

  126. K. Ohmori, H. Shimizu, Y. Tachikawa and K. Yonekura, Anomaly polynomial of general 6d SCFTs, PTEP 2014 (2014) 103B07 [arXiv:1408.5572] [INSPIRE].

  127. O. Bergman, M. Fazzi, D. Rodríguez-Gómez and A. Tomasiello, Charges and holography in 6d (1, 0) theories, JHEP 05 (2020) 138 [arXiv:2002.04036] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  128. F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].

    Article  ADS  Google Scholar 

  129. D. Gaiotto and A. Tomasiello, Holography for (1, 0) theories in six dimensions, JHEP 12 (2014) 003 [arXiv:1404.0711] [INSPIRE].

    Article  ADS  Google Scholar 

  130. S. Cremonesi and A. Tomasiello, 6d holographic anomaly match as a continuum limit, JHEP 05 (2016) 031 [arXiv:1512.02225] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  131. F. Apruzzi, M. Fazzi, A. Passias, A. Rota and A. Tomasiello, Six-dimensional superconformal theories and their compactifications from type IIA supergravity, Phys. Rev. Lett. 115 (2015) 061601 [arXiv:1502.06616] [INSPIRE].

  132. F. Apruzzi and M. Fazzi, AdS7/CFT6 with orientifolds, JHEP 01 (2018) 124 [arXiv:1712.03235] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  133. J.A. Harvey, R. Minasian and G.W. Moore, NonAbelian tensor multiplet anomalies, JHEP 09 (1998) 004 [hep-th/9808060] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  134. D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for M-theory five-branes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  135. D.M. Hofman and N. Iqbal, Generalized global symmetries and holography, SciPost Phys. 4 (2018) 005 [arXiv:1707.08577] [INSPIRE].

    Article  ADS  Google Scholar 

  136. O. Aharony and E. Witten, Anti-de Sitter space and the center of the gauge group, JHEP 11 (1998) 018 [hep-th/9807205] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  137. E. Witten, AdS/CFT correspondence and topological field theory, JHEP 12 (1998) 012 [hep-th/9812012] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  138. O. Aharony and Y. Tachikawa, S-folds and 4d N = 3 superconformal field theories, JHEP 06 (2016) 044 [arXiv:1602.08638] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  139. S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an N = 1 superconformal gauge theory, Phys. Rev. D 58 (1998) 125025 [hep-th/9808075] [INSPIRE].

  140. A. Butti, D. Forcella and A. Zaffaroni, The dual superconformal theory for Lpqr manifolds, JHEP 09 (2005) 018 [hep-th/0505220] [INSPIRE].

    Article  ADS  Google Scholar 

  141. A. Bilal and C.-S. Chu, A note on the chiral anomaly in the AdS/CFT correspondence and 1/N2 correction, Nucl. Phys. B 562 (1999) 181 [hep-th/9907106] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  142. M.J. Duff, H. Lü and C.N. Pope, AdS5 × S5 untwisted, Nucl. Phys. B 532 (1998) 181 [hep-th/9803061] [INSPIRE].

    Article  ADS  Google Scholar 

  143. J.A. de Azcarraga, A.J. Macfarlane, A.J. Mountain and J.C. Perez Bueno, Invariant tensors for simple groups, Nucl. Phys. B 510 (1998) 657 [physics/9706006] [INSPIRE].

  144. R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

  145. R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

  146. S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

  147. F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

  148. J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].

  149. M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

  150. L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].

  151. K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [INSPIRE].

  152. J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].

  153. E. Witten, Some properties of O(32) superstrings, Phys. Lett. B 149 (1984) 351 [INSPIRE].

  154. S.M. Barr, Harmless axions in superstring theories, Phys. Lett. B 158 (1985) 397 [INSPIRE].

  155. K. Choi and J.E. Kim, Harmful axions in superstring models, Phys. Lett. B 154 (1985) 393 [Erratum ibid. 156 (1985) 452] [INSPIRE].

  156. J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  157. P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  158. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  159. S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].

  160. M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].

    Article  ADS  Google Scholar 

  161. R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].

  162. S. Ghigna, M. Lusignoli and M. Roncadelli, Instability of the invisible axion, Phys. Lett. B 283 (1992) 278 [INSPIRE].

  163. C. Vafa and E. Witten, Parity conservation in QCD, Phys. Rev. Lett. 53 (1984) 535 [INSPIRE].

  164. A. Hook, TASI lectures on the strong CP problem and axions, PoS(TASI2018)004 [arXiv:1812.02669] [INSPIRE].

  165. K. Fraser and M. Reece, Axion periodicity and coupling quantization in the presence of mixing, JHEP 05 (2020) 066 [arXiv:1910.11349] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  166. M. Dine, R.G. Leigh and D.A. MacIntire, Of CP and other gauge symmetries in string theory, Phys. Rev. Lett. 69 (1992) 2030 [hep-th/9205011] [INSPIRE].

    Article  ADS  Google Scholar 

  167. D. Lüst, E. Palti and C. Vafa, AdS and the Swampland, Phys. Lett. B 797 (2019) 134867 [arXiv:1906.05225] [INSPIRE].

  168. G. Aldazabal and L.E. Ibáñez, A note on 4D heterotic string vacua, FI-terms and the Swampland, Phys. Lett. B 782 (2018) 375 [arXiv:1804.07322] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  169. L. Álvarez-Gaumé, P.H. Ginsparg, G.W. Moore and C. Vafa, An O(16) × O(16) heterotic string, Phys. Lett. B 171 (1986) 155 [INSPIRE].

  170. A. Sagnotti, Surprises in open string perturbation theory, Nucl. Phys. B Proc. Suppl. 56 (1997) 332 [hep-th/9702093] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  171. S. Sugimoto, Anomaly cancellations in type-I D9-\( \overline{D} \)9 system and the USp(32) string theory, Prog. Theor. Phys. 102 (1999) 685 [hep-th/9905159] [INSPIRE].

  172. A. Sen, Tachyon dynamics in open string theory, Int. J. Mod. Phys. A 20 (2005) 5513 [hep-th/0410103] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  173. J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

  174. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics, University of Massachusetts, Amherst, MA, 01003, USA

    Ben Heidenreich

  2. Department of Physics, Harvard University, Cambridge, MA, 02138, USA

    Jacob McNamara, Miguel Montero, Matthew Reece & Irene Valenzuela

  3. Physics Department, University of California, Berkeley, CA, 94720, USA

    Tom Rudelius

  4. School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, 08540, USA

    Tom Rudelius

Authors
  1. Ben Heidenreich
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jacob McNamara
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Miguel Montero
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Matthew Reece
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Tom Rudelius
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Irene Valenzuela
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Miguel Montero.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2012.00009

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidenreich, B., McNamara, J., Montero, M. et al. Chern-Weil global symmetries and how quantum gravity avoids them. J. High Energ. Phys. 2021, 53 (2021). https://doi.org/10.1007/JHEP11(2021)053

Download citation

  • Received: 09 August 2021

  • Accepted: 24 October 2021

  • Published: 09 November 2021

  • DOI: https://doi.org/10.1007/JHEP11(2021)053

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gauge Symmetry
  • Global Symmetries
  • Superstrings and Heterotic Strings
  • Brane Dynamics in Gauge Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature