Skip to main content

Advertisement

SpringerLink
Completing the D7-brane local gaugino action
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 05 November 2021

Completing the D7-brane local gaugino action

  • Yuta Hamada  ORCID: orcid.org/0000-0001-6856-37641,
  • Arthur Hebecker2,
  • Gary Shiu3 &
  • …
  • Pablo Soler4 

Journal of High Energy Physics volume 2021, Article number: 33 (2021) Cite this article

  • 81 Accesses

  • 4 Citations

  • 15 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Within the ongoing debate about de Sitter (dS) vacua in string theory, different aspects of explicit dS proposals have come under intense scrutiny. One key ingredient is D7-brane gaugino condensation, which is usually treated using effective 4d supergravity. However, it is clearly more desirable to derive the relevant scalar potential directly from a local 10d Lagrangian. Such a local 10d description captures the interactions among the various localized sources and the background fields which are smeared in the 4d Lagrangian. While progress in this endeavour has recently been made, some form of non-locality related to the 4-gaugino term has remained hidden in the available proposals. We spell out the local counterterm removing the divergence that arises when integrating out the 3-form flux and which, upon dimensional reduction, serves to reproduce the relevant part of the 4d supergravity action. This is both a step towards a more complete understanding of 10d type-IIB supergravity as well as specifically towards better control of dS constructions in string theory involving gaugino condensation.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J. P. Derendinger, L. E. Ibáñez and H. P. Nilles, On the low-energy d = 4, N = 1 supergravity theory extracted from the d = 10, N = 1 superstring, Phys. Lett. B 155 (1985) 65 [INSPIRE].

    ADS  Google Scholar 

  2. M. Dine, R. Rohm, N. Seiberg and E. Witten, Gluino condensation in superstring models, Phys. Lett. B 156 (1985) 55 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. L. E. Ibanez and A. M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge, U.K. (2012).

    MATH  Google Scholar 

  4. S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. V. Balasubramanian, P. Berglund, J. P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. U. H. Danielsson and T. Van Riet, What if string theory has no de Sitter vacua?, Int. J. Mod. Phys. D 27 (2018) 1830007 [arXiv:1804.01120] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. G. Obied, H. Ooguri, L. Spodyneiko and C. Vafa, De Sitter space and the swampland, arXiv:1806.08362 [INSPIRE].

  8. S. K. Garg and C. Krishnan, Bounds on slow roll and the de Sitter swampland, JHEP 11 (2019) 075 [arXiv:1807.05193] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. H. Ooguri, E. Palti, G. Shiu and C. Vafa, Distance and de Sitter conjectures on the swampland, Phys. Lett. B 788 (2019) 180 [arXiv:1810.05506] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. J. Moritz, A. Retolaza and A. Westphal, Toward de Sitter space from ten dimensions, Phys. Rev. D 97 (2018) 046010 [arXiv:1707.08678] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. Y. Hamada, A. Hebecker, G. Shiu and P. Soler, On brane gaugino condensates in 10d, JHEP 04 (2019) 008 [arXiv:1812.06097] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  12. R. Kallosh, Gaugino condensation and geometry of the perfect square, Phys. Rev. D 99 (2019) 066003 [arXiv:1901.02023] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. Y. Hamada, A. Hebecker, G. Shiu and P. Soler, Understanding KKLT from a 10d perspective, JHEP 06 (2019) 019 [arXiv:1902.01410] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  14. F. Carta, J. Moritz and A. Westphal, Gaugino condensation and small uplifts in KKLT, JHEP 08 (2019) 141 [arXiv:1902.01412] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. F. F. Gautason, V. Van Hemelryck, T. Van Riet and G. Venken, A 10d view on the KKLT AdS vacuum and uplifting, JHEP 06 (2020) 074 [arXiv:1902.01415] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  16. I. Bena, M. Graña, N. Kovensky and A. Retolaza, Kähler moduli stabilization from ten dimensions, JHEP 10 (2019) 200 [arXiv:1908.01785] [INSPIRE].

    ADS  MATH  Google Scholar 

  17. S. Kachru, M. Kim, L. Mcallister and M. Zimet, De Sitter vacua from ten dimensions, arXiv:1908.04788 [INSPIRE].

  18. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton, NJ, U.S.A. (1992).

    MATH  Google Scholar 

  19. I. Bena, E. Dudas, M. Graña and S. Lüst, Uplifting runaways, Fortsch. Phys. 67 (2019) 1800100 [arXiv:1809.06861] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. R. Blumenhagen, D. Kläwer and L. Schlechter, Swampland variations on a theme by KKLT, JHEP 05 (2019) 152 [arXiv:1902.07724] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  21. M. Demirtas, M. Kim, L. Mcallister and J. Moritz, Vacua with small flux superpotential, Phys. Rev. Lett. 124 (2020) 211603 [arXiv:1912.10047] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. L. Randall, The boundaries of KKLT, Fortsch. Phys. 68 (2020) 1900105 [arXiv:1912.06693] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. M. Demirtas, M. Kim, L. McAllister and J. Moritz, Conifold vacua with small flux superpotential, Fortsch. Phys. 68 (2020) 2000085 [arXiv:2009.03312] [INSPIRE].

    MathSciNet  Google Scholar 

  24. X. Gao, A. Hebecker and D. Junghans, Control issues of KKLT, Fortsch. Phys. 68 (2020) 2000089 [arXiv:2009.03914] [INSPIRE].

    MathSciNet  Google Scholar 

  25. I. Bena, J. Blåbäck, M. Graña and S. Lüst, The tadpole problem, arXiv:2010.10519 [INSPIRE].

  26. A. Hebecker and S. Leonhardt, Winding uplifts and the challenges of weak and strong SUSY breaking in AdS, JHEP 03 (2021) 284 [arXiv:2012.00010] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  27. F. Carta, A. Mininno, N. Righi and A. Westphal, Gopakumar-Vafa hierarchies in winding inflation and uplifts, JHEP 05 (2021) 271 [arXiv:2101.07272] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  28. F. Carta and J. Moritz, Resolving spacetime singularities in flux compactifications & KKLT, arXiv:2101.05281 [INSPIRE].

  29. D. Andriot, P. Marconnet and D. Tsimpis, Warp factor and the gravitational wave spectrum, JCAP 07 (2021) 040 [arXiv:2103.09240] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. Y. Honma and H. Otsuka, Small flux superpotential in F-theory compactifications, Phys. Rev. D 103 (2021) 126022 [arXiv:2103.03003] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. I. Bena, J. Blåbäck, M. Graña and S. Lüst, Algorithmically solving the tadpole problem, arXiv:2103.03250 [INSPIRE].

  32. M.-S. Seo, Dilaton stabilization in KKLT revisited, Nucl. Phys. B 968 (2021) 115452 [arXiv:2103.00811] [INSPIRE].

  33. G. B. De Luca, E. Silverstein and G. Torroba, Hyperbolic compactification of M-theory and de Sitter quantum gravity, arXiv:2104.13380 [INSPIRE].

  34. B. V. Bento, D. Chakraborty, S. L. Parameswaran and I. Zavala, A new de Sitter solution with a weakly warped deformed conifold, arXiv:2105.03370 [INSPIRE].

  35. P. G. Cámara, L. E. Ibáñez and A. M. Uranga, Flux-induced SUSY-breaking soft terms on D7-D3 brane systems, Nucl. Phys. B 708 (2005) 268 [hep-th/0408036] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  36. P. Koerber and L. Martucci, From ten to four and back again: how to generalize the geometry, JHEP 08 (2007) 059 [arXiv:0707.1038] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  37. D. Baumann, A. Dymarsky, S. Kachru, I. R. Klebanov and L. McAllister, Compactification effects in D-brane inflation, Phys. Rev. Lett. 104 (2010) 251602 [arXiv:0912.4268] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  38. D. Baumann, A. Dymarsky, S. Kachru, I. R. Klebanov and L. McAllister, D3-brane potentials from fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. A. Dymarsky and L. Martucci, D-brane non-perturbative effects and geometric deformations, JHEP 04 (2011) 061 [arXiv:1012.4018] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  40. M. Graña, N. Kovensky and A. Retolaza, Gaugino mass term for D-branes and generalized complex geometry, JHEP 06 (2020) 047 [arXiv:2002.01481] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  41. P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  42. P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  43. P. Hořava, Gluino condensation in strongly coupled heterotic string theory, Phys. Rev. D 54 (1996) 7561 [hep-th/9608019] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. E. A. Mirabelli and M. E. Peskin, Transmission of supersymmetry breaking from a four-dimensional boundary, Phys. Rev. D 58 (1998) 065002 [hep-th/9712214] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  45. A. Falkowski, H. M. Lee and C. Lüdeling, Gravity mediated supersymmetry breaking in six dimensions, JHEP 10 (2005) 090 [hep-th/0504091] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. S. B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  47. G. Shiu, G. Torroba, B. Underwood and M. R. Douglas, Dynamics of warped flux compactifications, JHEP 06 (2008) 024 [arXiv:0803.3068] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  48. M. R. Douglas, Effective potential and warp factor dynamics, JHEP 03 (2010) 071 [arXiv:0911.3378] [INSPIRE].

    ADS  MATH  Google Scholar 

  49. F. Marchesano, P. McGuirk and G. Shiu, Open string wavefunctions in warped compactifications, JHEP 04 (2009) 095 [arXiv:0812.2247] [INSPIRE].

    ADS  MATH  Google Scholar 

  50. F. Marchesano, P. McGuirk and G. Shiu, Chiral matter wavefunctions in warped compactifications, JHEP 05 (2011) 090 [arXiv:1012.2759] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. P. McGuirk, G. Shiu and F. Ye, Soft branes in supersymmetry-breaking backgrounds, JHEP 07 (2012) 188 [arXiv:1206.0754] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 [hep-th/0406137] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  53. D. Lüst, F. Marchesano, L. Martucci and D. Tsimpis, Generalized non-supersymmetric flux vacua, JHEP 11 (2008) 021 [arXiv:0807.4540] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. S. B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. M. Nakahara, Geometry, topology and physics, CRC press, U.S.A. (2003).

  56. D. Huybrechts, Complex geometry: an introduction, Springer, Berlin, Heidelberg, Germany (2005).

  57. D. Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, U.K. (2012).

  58. A. Van Proeyen, Tools for supersymmetry, Ann. U. Craiova Phys. 9 (1999) 1 [hep-th/9910030] [INSPIRE].

    Google Scholar 

  59. C. Beasley, J. J. Heckman and C. Vafa, GUTs and exceptional branes in F-theory. Part I, JHEP 01 (2009) 058 [arXiv:0802.3391] [INSPIRE].

  60. T. W. Grimm and J. Louis, The effective action of N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  61. A. Retolaza, J. Rogers, R. Tatar and F. Tonioni, Branes, fermions, and superspace dualities, arXiv:2106.02090 [INSPIRE].

  62. M. Berkooz, M. R. Douglas and R. G. Leigh, Branes intersecting at angles, Nucl. Phys. B 480 (1996) 265 [hep-th/9606139] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  63. R. Donagi and M. Wijnholt, Model building with F-theory, Adv. Theor. Math. Phys. 15 (2011) 1237 [arXiv:0802.2969] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  64. A. Strominger, Superstrings with torsion, Nucl. Phys. B 274 (1986) 253 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Harvard University, Cambridge, MA, 02138, USA

    Yuta Hamada

  2. Institute for Theoretical Physics, Department of Physics and Astronomy, University of Heidelberg, Philosophenweg 19, D-69120, Heidelberg, Germany

    Arthur Hebecker

  3. Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, WI, 53706, USA

    Gary Shiu

  4. Center for Theoretical Physics of the Universe, Institute for Basic Science, 55 EXPO-ro, Yuseong-gu, Daejeon, 34051, South Korea

    Pablo Soler

Authors
  1. Yuta Hamada
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Arthur Hebecker
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Gary Shiu
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Pablo Soler
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Yuta Hamada.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2105.11467

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hamada, Y., Hebecker, A., Shiu, G. et al. Completing the D7-brane local gaugino action. J. High Energ. Phys. 2021, 33 (2021). https://doi.org/10.1007/JHEP11(2021)033

Download citation

  • Received: 10 June 2021

  • Revised: 14 September 2021

  • Accepted: 20 October 2021

  • Published: 05 November 2021

  • DOI: https://doi.org/10.1007/JHEP11(2021)033

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Strings and branes phenomenology
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.