Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

On improving NLO merging for \( \mathrm{t}\overline{\mathrm{t}}\mathrm{W} \) production

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 05 November 2021
  • volume 2021, Article number: 29 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
On improving NLO merging for \( \mathrm{t}\overline{\mathrm{t}}\mathrm{W} \) production
Download PDF
  • Rikkert Frederix1 &
  • Ioannis Tsinikos1 
  • 224 Accesses

  • 9 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We introduce an improvement to the FxFx matrix element merging procedure for pp → \( t\overline{t}W \) production at NLO in QCD with one and/or two additional jets. The main modification is an improved treatment of jets that are not logarithmically enhanced in the low transverse-momentum regime. We provide predictions for the inclusive cross section and the \( t\overline{t}W \) differential distributions including parton-shower effects. Taking also the NLO EW corrections into account, this results in the most-accurate predictions for this process to date. We further proceed to include the on-shell LO decays of the \( t\overline{t}W \) including the tree-level spin correlations within the narrow-width approximation, focusing on the multi-lepton signatures studied at the LHC. We find a ∼30% increase over the NLO QCD prediction and large non-flat K-factors to differential distributions.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. ATLAS collaboration, Measurement of the \( t\overline{t}Z \) and \( t\overline{t}W \) cross sections in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 99 (2019) 072009 [arXiv:1901.03584] [INSPIRE].

  2. CMS collaboration, Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 08 (2018) 011 [arXiv:1711.02547] [INSPIRE].

  3. ATLAS collaboration, Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a Z boson at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 81 (2021) 737 [arXiv:2103.12603] [INSPIRE].

  4. CMS collaboration, Measurement of top quark pair production in association with a Z boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2020) 056 [arXiv:1907.11270] [INSPIRE].

  5. ATLAS collaboration, Analysis of \( t\overline{t}H \) and \( t\overline{t}W \) production in multilepton final states with the ATLAS detector, ATLAS-CONF-2019-045 (2019).

  6. CMS collaboration, Search for Higgs boson production in association with top quarks in multilepton final states at \( \sqrt{s} \) = 13 TeV, CMS-PAS-HIG-17-004 (2017).

  7. ATLAS collaboration, Evidence for \( t\overline{t}t\overline{t} \) production in the multilepton final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 1085 [arXiv:2007.14858] [INSPIRE].

  8. R. Frederix, D. Pagani and M. Zaro, Large NLO corrections in \( t\overline{t}{W}^{\pm } \) and \( t\overline{t}t\overline{t} \) hadroproduction from supposedly subleading EW contributions, JHEP 02 (2018) 031 [arXiv:1711.02116] [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. A. Dror, M. Farina, E. Salvioni and J. Serra, Strong tW Scattering at the LHC, JHEP 01 (2016) 071 [arXiv:1511.03674] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Frederix and I. Tsinikos, Subleading EW corrections and spin-correlation effects in \( t\overline{t}W \) multi-lepton signatures, Eur. Phys. J. C 80 (2020) 803 [arXiv:2004.09552] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Broggio, A. Ferroglia, R. Frederix, D. Pagani, B. D. Pecjak and I. Tsinikos, Top-quark pair hadroproduction in association with a heavy boson at NLO + NNLL including EW corrections, JHEP 08 (2019) 039 [arXiv:1907.04343] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Kulesza, L. Motyka, D. Schwartländer, T. Stebel and V. Theeuwes, Associated top quark pair production with a heavy boson: differential cross sections at NLO + NNLL accuracy, Eur. Phys. J. C 80 (2020) 428 [arXiv:2001.03031] [INSPIRE].

    Article  ADS  Google Scholar 

  13. F. Maltoni, D. Pagani and I. Tsinikos, Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on \( t\overline{t}H \) searches at the LHC, JHEP 02 (2016) 113 [arXiv:1507.05640] [INSPIRE].

    Article  ADS  Google Scholar 

  14. F. Maltoni, M. L. Mangano, I. Tsinikos and M. Zaro, Top-quark charge asymmetry and polarization in \( t\overline{t}{W}^{\pm } \) production at the LHC, Phys. Lett. B 736 (2014) 252 [arXiv:1406.3262] [INSPIRE].

    Article  ADS  Google Scholar 

  15. G. Bevilacqua, H.-Y. Bi, H. B. Hartanto, M. Kraus and M. Worek, The simplest of them all: \( t\overline{t}{W}^{\pm } \) at NLO accuracy in QCD, JHEP 08 (2020) 043 [arXiv:2005.09427] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Denner and G. Pelliccioli, NLO QCD corrections to off-shell \( t\overline{t}{W}^{\pm } \) production at the LHC, JHEP 11 (2020) 069 [arXiv:2007.12089] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Denner and G. Pelliccioli, Combined NLO EW and QCD corrections to off-shell \( t\overline{t}W \) production at the LHC, Eur. Phys. J. C 81 (2021) 354 [arXiv:2102.03246] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Bevilacqua, H.-Y. Bi, H. B. Hartanto, M. Kraus, J. Nasufi and M. Worek, NLO QCD corrections to off-shell \( t\overline{t}{W}^{\pm } \) production at the LHC: Correlations and Asymmetries, Eur. Phys. J. C 81 (2021) 675 [arXiv:2012.01363] [INSPIRE].

    Article  ADS  Google Scholar 

  19. F. F. Cordero, M. Kraus and L. Reina, Top-quark pair production in association with a W± gauge boson in the POWHEG-BOX, Phys. Rev. D 103 (2021) 094014 [arXiv:2101.11808] [INSPIRE].

    Article  ADS  Google Scholar 

  20. S. Frixione and B. R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

  21. P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

  22. S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  24. Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034 [arXiv:1905.09127] [INSPIRE].

  25. S. von Buddenbrock, R. Ruiz and B. Mellado, Anatomy of inclusive \( t\overline{t}W \) production at hadron colliders, Phys. Lett. B 811 (2020) 135964 [arXiv:2009.00032] [INSPIRE].

    Article  Google Scholar 

  26. R. Frederix, S. Frixione, V. Hirschi, D. Pagani, H. S. Shao and M. Zaro, The automation of next-to-leading order electroweak calculations, JHEP 07 (2018) 185 [arXiv:1804.10017] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].

    Article  ADS  Google Scholar 

  28. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  29. S. Frixione, P. Nason and B. R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].

  30. K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013) 082 [arXiv:1212.4504] [INSPIRE].

    Article  ADS  Google Scholar 

  31. K. Hamilton, P. Nason and G. Zanderighi, MINLO: Multi-Scale Improved NLO, JHEP 10 (2012) 155 [arXiv:1206.3572] [INSPIRE].

    Article  ADS  Google Scholar 

  32. N. Moretti, Precise Predictions for Top-quark Pair Production in Association with Multiple Jets, Ph.D. Thesis, University of Zurich, Zurich Switzerland (2016).

  33. NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].

  34. S. Catani, Y. L. Dokshitzer, M. H. Seymour and B. R. Webber, Longitudinally invariant Kt clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  35. P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Cacciari, G. P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE-223 62, Lund, Sweden

    Rikkert Frederix & Ioannis Tsinikos

Authors
  1. Rikkert Frederix
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ioannis Tsinikos
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Rikkert Frederix.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2108.07826

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frederix, R., Tsinikos, I. On improving NLO merging for \( \mathrm{t}\overline{\mathrm{t}}\mathrm{W} \) production. J. High Energ. Phys. 2021, 29 (2021). https://doi.org/10.1007/JHEP11(2021)029

Download citation

  • Received: 07 September 2021

  • Revised: 12 October 2021

  • Accepted: 12 October 2021

  • Published: 05 November 2021

  • DOI: https://doi.org/10.1007/JHEP11(2021)029

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • QCD Phenomenology

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature