Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Gauged sigma-models with nonclosed 3-form and twisted Jacobi structures
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Gauge Linear Sigma Model for Berglund—Hübsch-Type Calabi—Yau Manifolds

01 December 2019

K. Aleshkin & A. Belavin

Non-local non-linear sigma models

02 September 2019

Steven S. Gubser, Christian B. Jepsen, … Amos Yarom

Jacobi sigma models

10 March 2021

Francesco Bascone, Franco Pezzella & Patrizia Vitale

Non Abelian T-duality in Gauged Linear Sigma Models

11 April 2018

Nana Cabo Bizet, Aldo Martínez-Merino, … Roberto Santos-Silva

Double-Janus linear sigma models and generalized reciprocity for Gauss sums

25 May 2021

Ori J. Ganor, Hao-Yu Sun & Nesty R. Torres-Chicon

Integrable deformed T1,1 sigma models from 4D Chern-Simons theory

07 September 2021

Osamu Fukushima, Jun-ichi Sakamoto & Kentaroh Yoshida

The geometry of gauged (super)conformal mechanics

05 August 2022

Delaram Mirfendereski, Joris Raeymaekers, … Dieter Van den Bleeken

Sigma models with local couplings: a new integrability-RG flow connection

06 November 2020

Ben Hoare, Nat Levine & Arkady A. Tseytlin

Integrability vs. RG flow in G × G and G × G/H sigma models

11 May 2021

Nat Levine & Arkady A. Tseytlin

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 30 November 2020

Gauged sigma-models with nonclosed 3-form and twisted Jacobi structures

  • Athanasios Chatzistavrakidis  ORCID: orcid.org/0000-0002-9326-98711 &
  • Grgur Šimunić  ORCID: orcid.org/0000-0002-8886-96961 

Journal of High Energy Physics volume 2020, Article number: 173 (2020) Cite this article

  • 178 Accesses

  • 5 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We study aspects of two-dimensional nonlinear sigma models with Wess-Zumino term corresponding to a nonclosed 3-form, which may arise upon dimensional reduction in the target space. Our goal in this paper is twofold. In a first part, we investigate the conditions for consistent gauging of sigma models in the presence of a nonclosed 3-form. In the Abelian case, we find that the target of the gauged theory has the structure of a contact Courant algebroid, twisted by a 3-form and two 2-forms. Gauge invariance constrains the theory to (small) Dirac structures of the contact Courant algebroid. In the non-Abelian case, we draw a similar parallel between the gauged sigma model and certain transitive Courant algebroids and their corresponding Dirac structures. In the second part of the paper, we study two-dimensional sigma models related to Jacobi structures. The latter generalise Poisson and contact geometry in the presence of an additional vector field. We demonstrate that one can construct a sigma model whose gauge symmetry is controlled by a Jacobi structure, and moreover we twist the model by a 3-form. This construction is then the analogue of WZW-Poisson structures for Jacobi manifolds.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. P. Schaller and T. Strobl, Poisson structure induced (topological) field theories, Mod. Phys. Lett. A 9 (1994) 3129 [hep-th/9405110] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  2. N. Ikeda, Two-dimensional gravity and nonlinear gauge theory, Annals Phys. 235 (1994) 435 [hep-th/9312059] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  3. A.S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula, Commun. Math. Phys. 212 (2000) 591 [math/9902090] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  4. A.S. Cattaneo and G. Felder, Poisson sigma models and deformation quantization, Mod. Phys. Lett. A 16 (2001) 179 [hep-th/0102208] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  5. T. Klosch and T. Strobl, Classical and quantum gravity in (1+1)-Dimensions. Part 1: A unifying approach, Class. Quant. Grav. 13 (1996) 965 [Erratum ibid. 14 (1997) 825] [gr-qc/9508020] [INSPIRE].

  6. D. Grumiller, W. Kummer and D.V. Vassilevich, Dilaton gravity in two-dimensions, Phys. Rept. 369 (2002) 327 [hep-th/0204253] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. A.Y. Alekseev, P. Schaller and T. Strobl, The topological G/G WZW model in the generalized momentum representation, Phys. Rev. D 52 (1995) 7146 [hep-th/9505012] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405 [hep-th/9502010] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  9. N. Ikeda, Lectures on AKSZ sigma models for Physicists, in Workshop on Strings, Membranes and Topological Field Theory, pp. 79–169, WSPC, (2017), DOI [arXiv:1204.3714] [INSPIRE].

  10. A. Kotov, P. Schaller and T. Strobl, Dirac sigma models, Commun. Math. Phys. 260 (2005) 455 [hep-th/0411112] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  11. T. Courant, Dirac manifolds, Trans. Am. Math. Soc. 319 (1990) 631.

    MathSciNet  MATH  Google Scholar 

  12. Z.-J. Liu, A. WEinstein and P. Xu, Manin Triples for Lie Bialgebroids, J. Diff. Geom. 45 (1997) 547 [dg-ga/9508013] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  13. M. Gualtieri, Generalized complex geometry, Ph.D. Thesis, Oxford University, (2003), math/0401221 [INSPIRE].

  14. C.M. Hull and B.J. Spence, The gauged nonlinear sigma model with Wess-Zumino term, Phys. Lett. B 232 (1989) 204 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. C.M. Hull and B.J. Spence, The geometry of the gauged sigma model with Wess-Zumino term, Nucl. Phys. B 353 (1991) 379 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  16. V. Salnikov and T. Strobl, Dirac sigma models from gauging, JHEP 11 (2013) 110 [arXiv:1311.7116] [INSPIRE].

    ADS  Google Scholar 

  17. E. Plauschinn, T-duality revisited, JHEP 01 (2014) 131 [arXiv:1310.4194] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  18. A. Chatzistavrakidis, A. Deser, L. Jonke and T. Strobl, Beyond the standard gauging: gauge symmetries of Dirac sigma models, JHEP 08 (2016) 172 [arXiv:1607.00342] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. A. Chatzistavrakidis, A. Deser, L. Jonke and T. Strobl, Strings in Singular Space-Times and their Universal Gauge Theory, Annales Henri Poincaré 18 (2017) 2641 [arXiv:1608.03250] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  20. P. Ševera and T. Strobl, Transverse generalized metrics and 2d sigma models, J. Geom. Phys. 146 (2019) 103509 [arXiv:1901.08904] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  21. N. Ikeda and T. Strobl, On the relation of Lie algebroids to constrained systems and their BV/BFV formulation, Annales Henri Poincaré 20 (2019) 527 [arXiv:1803.00080] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  22. N. Ikeda, Momentum sections in Hamiltonian mechanics and sigma models, SIGMA 15 (2019) 076 [arXiv:1905.02434] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  23. P. Bouwknegt, Lectures on cohomology, T-duality, and generalized geometry, Lect. Notes Phys. 807 (2010) 261 [INSPIRE].

    ADS  MATH  Google Scholar 

  24. A. Coimbra, R. Minasian, H. Triendl and D. Waldram, Generalised geometry for string corrections, JHEP 11 (2014) 160 [arXiv:1407.7542] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. P. Ševera, Letters to Alan WEinstein about Courant algebroids, arXiv:1707.00265 [INSPIRE].

  26. H. Bursztyn, G.R. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Adv. Math. 211 (2007) 726 [math/0509640] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  27. Z. Chen, M. Stiénon and P. Xu, On regular Courant algebroids, J. Symplectic Geom. 11 (2013) 1.

    MathSciNet  MATH  Google Scholar 

  28. P. Ševera, Poisson-Lie T-duality and Courant Algebroids, Lett. Math. Phys. 105 (2015) 1689 [arXiv:1502.04517] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  29. K. Wright, Generalised contact geometry as reduced generalised complex geometry, J. Geom. Phys. 130 (2018) 331 [arXiv:1708.09550] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. A. Kotov and T. Strobl, Gauging without initial symmetry, J. Geom. Phys. 99 (2016) 184 [arXiv:1403.8119] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. C. Klimčík and T. Strobl, WZW — Poisson manifolds, J. Geom. Phys. 43 (2002) 341 [math/0104189] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. P. Ševera and A. WEinstein, Poisson geometry with a 3 form background, Prog. Theor. Phys. Suppl. 144 (2001) 145 [math/0107133] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  33. N. Ikeda and T. Strobl, BV and BFV for the H-twisted Poisson sigma model, arXiv:1912.13511 [INSPIRE].

  34. A. Lichnerowicz, Les variétés de Jacobi et leurs algébres de Lie associées, J. Diff. Geom. 12 (1977) 253.

    MATH  Google Scholar 

  35. M. Crainic and C. Zhu, Integrability of Jacobi structures, Annales Inst. Fourier 57 (2007) 1181.

    MathSciNet  MATH  Google Scholar 

  36. I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Birkhäuser Verlag (1994).

  37. J.M. Nunes da Costa and F. Petalidou, Twisted Jacobi Manifolds, Twisted Dirac-Jacobi Structures and Quasi-Jacobi Bialgebroids, J. Phys. A 39 (2006) 10449.

    ADS  MathSciNet  MATH  Google Scholar 

  38. E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. D. Iglesias and J.C. Marrero, Generalized Lie bialgebroids and Jacobi structures, J. Geom. Phys. 40 (2001) 176.

    ADS  MathSciNet  MATH  Google Scholar 

  40. J. Grabowski and G. Marmo, Jacobi structures revisited, J. Phys. A 34 (2001) 10975 [math/0111148] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  41. M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton University Press (1992).

  42. A. Chatzistavrakidis, A. Deser, L. Jonke and T. Strobl, Gauging as constraining: the universal generalised geometry action in two dimensions, PoS CORFU2016 (2017) 087 [arXiv:1705.05007] [INSPIRE].

  43. F. Bourgeois, A survey of contact homology, in New Perspectives and Challenges in Symplectic Field Theory, CRM Proc. Lect. Notes 49 (2009) 45.

  44. A. Kirillov, Local Lie Algebras, Russ. Math. Surv. 31 (1976) 55.

  45. C.-M. Marle, On Jacobi Manifolds and Jacobi Bundles, in P. Dazord and A. Weinstein eds. Symplectic Geometry, Groupoids, and Integrable Systems, Mathematical Sciences Research Institute Publications, volume 20, Springer, New York, U.S.A. (1991).

  46. E. Witten, Topological σ-models, Commun. Math. Phys. 118 (1988) 411 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  47. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281 [math/0209099] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  48. N. Ikeda, Chern-Simons gauge theory coupled with BF theory, Int. J. Mod. Phys. A 18 (2003) 2689 [hep-th/0203043] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. A. Deser, M.A. Heller and C. Sämann, Extended Riemannian Geometry II: Local Heterotic Double Field Theory, JHEP 04 (2018) 106 [arXiv:1711.03308] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  50. A. Chatzistavrakidis, L. Jonke, F.S. Khoo and R.J. Szabo, Double Field Theory and Membrane sigma-models, JHEP 07 (2018) 015 [arXiv:1802.07003] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. O. Hohm, W. Siegel and B. Zwiebach, Doubled α′-geometry, JHEP 02 (2014) 065 [arXiv:1306.2970] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. O. Hohm and B. Zwiebach, Green-Schwarz mechanism and α′-deformed Courant brackets, JHEP 01 (2015) 012 [arXiv:1407.0708] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  53. O.A. Bedoya, D. Marqués and C. Núñez, Heterotic α’-corrections in Double Field Theory, JHEP 12 (2014) 074 [arXiv:1407.0365] [INSPIRE].

    ADS  Google Scholar 

  54. W.H. Baron, E. Lescano and D. Marqués, The generalized Bergshoeff-de Roo identification, JHEP 11 (2018) 160 [arXiv:1810.01427] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  55. A. Bravetti, H. Cruz and D. Tapias, Contact Hamiltonian mechanics, Annals Phys. 376 (2017) 17.

  56. F. Bascone, F. Pezzella and P. Vitale, Jacobi σ-models, arXiv:2007.12543 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Division of Theoretical Physics, Rudjer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia

    Athanasios Chatzistavrakidis & Grgur Šimunić

Authors
  1. Athanasios Chatzistavrakidis
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Grgur Šimunić
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Athanasios Chatzistavrakidis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.08951

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chatzistavrakidis, A., Šimunić, G. Gauged sigma-models with nonclosed 3-form and twisted Jacobi structures. J. High Energ. Phys. 2020, 173 (2020). https://doi.org/10.1007/JHEP11(2020)173

Download citation

  • Received: 27 July 2020

  • Revised: 07 October 2020

  • Accepted: 19 October 2020

  • Published: 30 November 2020

  • DOI: https://doi.org/10.1007/JHEP11(2020)173

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gauge Symmetry
  • Sigma Models
  • Differential and Algebraic Geometry
  • Topological Field Theories
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.