Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Undulating dark matter
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Maximally self-interacting dark matter: models and predictions

30 December 2020

Ayuki Kamada, Hee Jung Kim & Takumi Kuwahara

Self-Destructing Dark Matter

03 July 2019

Yuval Grossman, Roni Harnik, … Yue Zhang

Faint light from dark matter: classifying and constraining dark matter-photon effective operators

11 April 2019

Bradley J. Kavanagh, Paolo Panci & Robert Ziegler

Prospective study of light dark matter search with a newly proposed DarkSHINE experiment

29 November 2022

Jing Chen, Ji-Yuan Chen, … Yi-Fan Zhu

Searching for dark matter with $$t {\bar{t}}$$ t t ¯ resonance

13 March 2019

Yoav Afik, Eitan Gozani & Yoram Rozen

Signatures of non-thermal dark matter with kination and early matter domination. Gravitational waves versus laboratory searches

19 December 2022

Anish Ghoshal, Lucien Heurtier & Arnab Paul

Dark matter models for the 511 keV galactic line predict keV electron recoils on Earth

06 February 2021

Yohei Ema, Filippo Sala & Ryosuke Sato

Dark Matter Particles: Properties and Detections

01 October 2019

Salah Eddine Ennadifi & Karim Douhou

Inelastic dark matter, small scale problems, and the XENON1T excess

18 October 2021

Seungwon Baek

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 23 November 2020

Undulating dark matter

  • Joe Davighi  ORCID: orcid.org/0000-0003-1002-09721,
  • Matthew McCullough1,2 &
  • Joseph Tooby-Smith  ORCID: orcid.org/0000-0003-2831-598X3 

Journal of High Energy Physics volume 2020, Article number: 120 (2020) Cite this article

  • 131 Accesses

  • 5 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We suggest that an interplay between microscopic and macroscopic physics can give rise to dark matter (DM) whose interactions with the visible sector fundamentally undulate in time, independent of celestial dynamics. A concrete example is provided by fermionic DM with an electric dipole moment (EDM) sourced by an oscillating axion-like field, resulting in undulations in the scattering rate. The discovery potential of light DM searches can be enhanced by additionally searching for undulating scattering rates, especially in detection regions where background rates are large and difficult to estimate, such as for DM masses in the vicinity of 1 MeV where DM-electron scattering dominantly populates the single electron bin. An undulating signal could also reveal precious dark sector information after discovery. In this regard we emphasise that, if the recent XENON1T excess of events is due to light DM scattering exothermically off electrons, future analyses of the time-dependence of events could offer clues as to the microscopic origins of the putative signal.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. S.K. Lee, M. Lisanti, S. Mishra-Sharma and B.R. Safdi, Modulation Effects in Dark Matter-Electron Scattering Experiments, Phys. Rev. D 92 (2015) 083517 [arXiv:1508.07361] [INSPIRE].

    ADS  Google Scholar 

  2. SENSEI collaboration, Single-electron and single-photon sensitivity with a silicon Skipper CCD, Phys. Rev. Lett. 119 (2017) 131802 [arXiv:1706.00028] [INSPIRE].

  3. SENSEI collaboration, SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run, Phys. Rev. Lett. 121 (2018) 061803 [arXiv:1804.00088] [INSPIRE].

  4. SENSEI collaboration, SENSEI: Direct-Detection Results on sub-GeV Dark Matter from a New Skipper-CCD, Phys. Rev. Lett. 125 (2020) 171802 [arXiv:2004.11378] [INSPIRE].

  5. SuperCDMS collaboration, Projected Sensitivity of the SuperCDMS SNOLAB experiment, Phys. Rev. D 95 (2017) 082002 [arXiv:1610.00006] [INSPIRE].

  6. SuperCDMS collaboration, First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector, Phys. Rev. Lett. 121 (2018) 051301 [Erratum ibid. 122 (2019) 069901] [arXiv:1804.10697] [INSPIRE].

  7. XENON collaboration, The XENON1T Dark Matter Experiment, Eur. Phys. J. C 77 (2017) 881 [arXiv:1708.07051] [INSPIRE].

  8. XENON collaboration, Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004 [arXiv:2006.09721] [INSPIRE].

  9. P.W. Graham and S. Rajendran, New Observables for Direct Detection of Axion Dark Matter, Phys. Rev. D 88 (2013) 035023 [arXiv:1306.6088] [INSPIRE].

    ADS  Google Scholar 

  10. M. Pospelov and T. ter Veldhuis, Direct and indirect limits on the electromagnetic form-factors of WIMPs, Phys. Lett. B 480 (2000) 181 [hep-ph/0003010] [INSPIRE].

    ADS  Google Scholar 

  11. K. Sigurdson, M. Doran, A. Kurylov, R.R. Caldwell and M. Kamionkowski, Dark-matter electric and magnetic dipole moments, Phys. Rev. D 70 (2004) 083501 [Erratum ibid. 73 (2006) 089903] [astro-ph/0406355] [INSPIRE].

  12. C.M. Ho and R.J. Scherrer, Anapole Dark Matter, Phys. Lett. B 722 (2013) 341 [arXiv:1211.0503] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. D. Schmidt, T. Schwetz and T. Toma, Direct Detection of Leptophilic Dark Matter in a Model with Radiative Neutrino Masses, Phys. Rev. D 85 (2012) 073009 [arXiv:1201.0906] [INSPIRE].

    ADS  Google Scholar 

  14. J. Kopp, L. Michaels and J. Smirnov, Loopy Constraints on Leptophilic Dark Matter and Internal Bremsstrahlung, JCAP 04 (2014) 022 [arXiv:1401.6457] [INSPIRE].

    ADS  Google Scholar 

  15. A. Ibarra and S. Wild, Dirac dark matter with a charged mediator: a comprehensive one-loop analysis of the direct detection phenomenology, JCAP 05 (2015) 047 [arXiv:1503.03382] [INSPIRE].

    ADS  Google Scholar 

  16. P. Sandick, K. Sinha and F. Teng, Simplified Dark Matter Models with Charged Mediators: Prospects for Direct Detection, JHEP 10 (2016) 018 [arXiv:1608.00642] [INSPIRE].

    ADS  Google Scholar 

  17. B.J. Kavanagh, P. Panci and R. Ziegler, Faint Light from Dark Matter: Classifying and Constraining Dark Matter-Photon Effective Operators, JHEP 04 (2019) 089 [arXiv:1810.00033] [INSPIRE].

    ADS  Google Scholar 

  18. X. Chu, J. Pradler and L. Semmelrock, Light dark states with electromagnetic form factors, Phys. Rev. D 99 (2019) 015040 [arXiv:1811.04095] [INSPIRE].

    ADS  Google Scholar 

  19. T. Banks, J.-F. Fortin and S. Thomas, Direct Detection of Dark Matter Electromagnetic Dipole Moments, arXiv:1007.5515 [INSPIRE].

  20. J. Bagnasco, M. Dine and S.D. Thomas, Detecting technibaryon dark matter, Phys. Lett. B 320 (1994) 99 [hep-ph/9310290] [INSPIRE].

    ADS  Google Scholar 

  21. P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor Probes of Light Dark Matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].

  22. J.H. Chang, R. Essig and A. Reinert, Light(ly)-coupled Dark Matter in the keV Range: Freeze-In and Constraints, arXiv:1911.03389 [INSPIRE].

  23. A.E. Nelson, Naturally Weak CP-violation, Phys. Lett. B 136 (1984) 387 [INSPIRE].

    ADS  Google Scholar 

  24. S.M. Barr, Solving the Strong CP Problem Without the Peccei-Quinn Symmetry, Phys. Rev. Lett. 53 (1984) 329 [INSPIRE].

    ADS  Google Scholar 

  25. S.M. Barr, A Natural Class of Nonpeccei-quinn Models, Phys. Rev. D 30 (1984) 1805 [INSPIRE].

    ADS  Google Scholar 

  26. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    ADS  Google Scholar 

  27. R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    ADS  Google Scholar 

  28. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    ADS  Google Scholar 

  29. F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    ADS  Google Scholar 

  30. P. Svrček and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

    ADS  Google Scholar 

  32. Y. Zhao, Cosmology and time dependent parameters induced by a misaligned light scalar, Phys. Rev. D 95 (2017) 115002 [arXiv:1701.02735] [INSPIRE].

    ADS  Google Scholar 

  33. A. Berlin, R.T. D’Agnolo, S.A.R. Ellis, C. Nantista, J. Neilson, P. Schuster et al., Axion Dark Matter Detection by Superconducting Resonant Frequency Conversion, JHEP 07 (2020) 088 [arXiv:1912.11048] [INSPIRE].

    ADS  Google Scholar 

  34. P. Sikivie and Q. Yang, Bose-Einstein Condensation of Dark Matter Axions, Phys. Rev. Lett. 103 (2009) 111301 [arXiv:0901.1106] [INSPIRE].

    ADS  Google Scholar 

  35. S. Davidson, Axions: Bose Einstein Condensate or Classical Field?, Astropart. Phys. 65 (2015) 101 [arXiv:1405.1139] [INSPIRE].

    ADS  Google Scholar 

  36. X. Chu, J.-L. Kuo, J. Pradler and L. Semmelrock, Stellar probes of dark sector-photon interactions, Phys. Rev. D 100 (2019) 083002 [arXiv:1908.00553] [INSPIRE].

    ADS  Google Scholar 

  37. K. Blum and D. Kushnir, Neutrino Signal of Collapse-induced Thermonuclear Supernovae: the Case for Prompt Black Hole Formation in SN1987A, Astrophys. J. 828 (2016) 31 [arXiv:1601.03422] [INSPIRE].

    ADS  Google Scholar 

  38. N. Bar, K. Blum and G. D’Amico, Is there a supernova bound on axions?, Phys. Rev. D 101 (2020) 123025 [arXiv:1907.05020] [INSPIRE].

    ADS  Google Scholar 

  39. J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter, Phys. Rev. Lett. 88 (2002) 091304 [hep-ph/0106249] [INSPIRE].

    ADS  Google Scholar 

  40. L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

    ADS  MATH  Google Scholar 

  41. L3 collaboration, Single photon and multiphoton events with missing energy in e+ e− collisions at LEP, Phys. Lett. B 587 (2004) 16 [hep-ex/0402002] [INSPIRE].

  42. J.-F. Fortin and T.M.P. Tait, Collider Constraints on Dipole-Interacting Dark Matter, Phys. Rev. D 85 (2012) 063506 [arXiv:1103.3289] [INSPIRE].

    ADS  Google Scholar 

  43. R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].

    ADS  Google Scholar 

  44. R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky and T.-T. Yu, Direct Detection of sub-GeV Dark Matter with Semiconductor Targets, JHEP 05 (2016) 046 [arXiv:1509.01598] [INSPIRE].

    ADS  Google Scholar 

  45. PandaX collaboration, PandaX: A Liquid Xenon Dark Matter Experiment at CJPL, Sci. China Phys. Mech. Astron. 57 (2014) 1476 [arXiv:1405.2882] [INSPIRE].

  46. R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First Direct Detection Limits on sub-GeV Dark Matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].

    ADS  Google Scholar 

  47. DAMIC collaboration, Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB, Phys. Rev. Lett. 123 (2019) 181802 [arXiv:1907.12628] [INSPIRE].

  48. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  49. Y. Kahn, B.R. Safdi and J. Thaler, Broadband and Resonant Approaches to Axion Dark Matter Detection, Phys. Rev. Lett. 117 (2016) 141801 [arXiv:1602.01086] [INSPIRE].

    ADS  Google Scholar 

  50. A. Berlin, R.T. D’Agnolo, S.A. Ellis and K. Zhou, in preparation.

  51. J. Smirnov and J.F. Beacom, New Freezeout Mechanism for Strongly Interacting Dark Matter, Phys. Rev. Lett. 125 (2020) 131301 [arXiv:2002.04038] [INSPIRE].

    ADS  Google Scholar 

  52. K. Kannike, M. Raidal, H. Veermäe, A. Strumia and D. Teresi, Dark Matter and the XENON1T electron recoil excess, Phys. Rev. D 102 (2020) 095002 [arXiv:2006.10735] [INSPIRE].

    ADS  Google Scholar 

  53. B. Fornal, P. Sandick, J. Shu, M. Su and Y. Zhao, Boosted Dark Matter Interpretation of the XENON1T Excess, Phys. Rev. Lett. 125 (2020) 161804 [arXiv:2006.11264] [INSPIRE].

    ADS  Google Scholar 

  54. Y. Chen, M.-Y. Cui, J. Shu, X. Xue, G. Yuan and Q. Yuan, Sun Heated MeV-scale Dark Matter and the XENON1T Electron Recoil Excess, arXiv:2006.12447 [INSPIRE].

  55. L. Delle Rose, G. Hütsi, C. Marzo and L. Marzola, Impact of loop-induced processes on the boosted dark matter interpretation of the XENON1T excess, arXiv:2006.16078 [INSPIRE].

  56. P. Ko and Y. Tang, Semi-annihilating Z3 Dark Matter for XENON1T Excess, arXiv:2006.15822 [INSPIRE].

  57. D. McKeen, M. Pospelov and N. Raj, Hydrogen portal to exotic radioactivity, arXiv:2006.15140 [INSPIRE].

  58. L. Su, W. Wang, L. Wu, J.M. Yang and B. Zhu, Atmospheric Dark Matter from Inelastic Cosmic Ray Collision in Xenon1T, arXiv:2006.11837 [INSPIRE].

  59. K. Harigaya, Y. Nakai and M. Suzuki, Inelastic Dark Matter Electron Scattering and the XENON1T Excess, Phys. Lett. B 809 (2020) 135729 [arXiv:2006.11938] [INSPIRE].

    Google Scholar 

  60. H.M. Lee, Exothermic Dark Matter for XENON1T Excess, arXiv:2006.13183 [INSPIRE].

  61. M. Baryakhtar, A. Berlin, H. Liu and N. Weiner, Electromagnetic Signals of Inelastic Dark Matter Scattering, arXiv:2006.13918 [INSPIRE].

  62. I.M. Bloch, A. Caputo, R. Essig, D. Redigolo, M. Sholapurkar and T. Volansky, Exploring New Physics with O(keV) Electron Recoils in Direct Detection Experiments, arXiv:2006.14521 [INSPIRE].

  63. H. An and D. Yang, Direct detection of freeze-in inelastic dark matter, arXiv:2006.15672 [INSPIRE].

  64. S. Baek, J. Kim and P. Ko, XENON1T excess in local Z2 DM models with light dark sector, Phys. Lett. B 810 (2020) 135848 [arXiv:2006.16876] [INSPIRE].

    Google Scholar 

  65. N.F. Bell, J.B. Dent, B. Dutta, S. Ghosh, J. Kumar and J.L. Newstead, Explaining the XENON1T excess with Luminous Dark Matter, Phys. Rev. Lett. 125 (2020) 161803 [arXiv:2006.12461] [INSPIRE].

    ADS  Google Scholar 

  66. G. Paz, A.A. Petrov, M. Tammaro and J. Zupan, Shining dark matter in Xenon1T, arXiv:2006.12462 [INSPIRE].

  67. M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

    ADS  MATH  Google Scholar 

  68. B.L. Ioffe, Calculation of Baryon Masses in Quantum Chromodynamics, Nucl. Phys. B 188 (1981) 317 [Erratum ibid. 191 (1981) 591] [INSPIRE].

  69. R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral Estimate of the Electric Dipole Moment of the Neutron in Quantum Chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. 91 (1980) 487] [INSPIRE].

  70. H.A. Riggs and H.J. Schnitzer, CP violating Yukawa couplings in the Skyrme model and the neutron electric dipole moment, Phys. Lett. B 305 (1993) 252 [hep-ph/9212273] [INSPIRE].

    ADS  Google Scholar 

  71. D. Egana-Ugrinovic, M. Low and J.T. Ruderman, Charged Fermions Below 100 GeV, JHEP 05 (2018) 012 [arXiv:1801.05432] [INSPIRE].

    ADS  Google Scholar 

  72. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. DAMTP, University of Cambridge, Wilberforce Road, Cambridge, U.K.

    Joe Davighi & Matthew McCullough

  2. Theoretical Physics Department, CERN, Geneva, Switzerland

    Matthew McCullough

  3. Cavendish Laboratory, University of Cambridge, Cambridge, U.K.

    Joseph Tooby-Smith

Authors
  1. Joe Davighi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Matthew McCullough
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Joseph Tooby-Smith
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Joe Davighi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.03662

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davighi, J., McCullough, M. & Tooby-Smith, J. Undulating dark matter. J. High Energ. Phys. 2020, 120 (2020). https://doi.org/10.1007/JHEP11(2020)120

Download citation

  • Received: 23 July 2020

  • Revised: 13 October 2020

  • Accepted: 13 October 2020

  • Published: 23 November 2020

  • DOI: https://doi.org/10.1007/JHEP11(2020)120

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • CP violation
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.