Abstract
We derive the \( T\overline{T} \)-perturbed version of two-dimensional q-deformed Yang-Mills theory on an arbitrary Riemann surface by coupling the unperturbed theory in the first order formalism to Jackiw-Teitelboim gravity. We show that the \( T\overline{T} \)-deformation results in a breakdown of the connection with a Chern-Simons theory on a Seifert manifold, and of the large N factorization into chiral and anti-chiral sectors. For the U(N) gauge theory on the sphere, we show that the large N phase transition persists, and that it is of third order and induced by instantons. The effect of the \( T\overline{T} \)-deformation is to decrease the critical value of the ’t Hooft coupling, and also to extend the class of line bundles for which the phase transition occurs. The same results are shown to hold for (q, t)-deformed Yang-Mills theory. We also explicitly evaluate the entanglement entropy in the large N limit of Yang-Mills theory, showing that the \( T\overline{T} \)-deformation decreases the contribution of the Boltzmann entropy.
References
F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)-deformed 2D quantum field theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
Y. Jiang, Lectures on solvable irrelevant deformations of 2d quantum field theory, arXiv:1904.13376 [INSPIRE].
J. Cardy, The \( T\overline{T} \) deformation of quantum field theory as random geometry, JHEP 10 (2018) 186 [arXiv:1801.06895] [INSPIRE].
S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2 holography and \( T\overline{T} \), JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].
S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, \( T\overline{T} \) partition function from topological gravity, JHEP 09 (2018) 158 [arXiv:1805.07386] [INSPIRE].
R. Conti, S. Negro and R. Tateo, The \( T\overline{T} \) perturbation and its geometric interpretation, JHEP 02 (2019) 085 [arXiv:1809.09593] [INSPIRE].
T.D. Brennan, C. Ferko, E. Martinec and S. Sethi, Defining the \( T\overline{T} \) deformation on AdS2, arXiv:2005.00431 [INSPIRE].
L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].
A. Giveon, N. Itzhaki and D. Kutasov, A solvable irrelevant deformation of AdS3/CFT2, JHEP 12 (2017) 155 [arXiv:1707.05800] [INSPIRE].
T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, Holography at finite cutoff with a T 2 deformation, JHEP 03 (2019) 004 [arXiv:1807.11401] [INSPIRE].
P. Kraus, J. Liu and D. Marolf, Cutoff AdS3 versus the \( T\overline{T} \) deformation, JHEP 07 (2018) 027 [arXiv:1801.02714] [INSPIRE].
P. Caputa, S. Datta and V. Shyam, Sphere partition functions & cut-off AdS, JHEP 05 (2019) 112 [arXiv:1902.10893] [INSPIRE].
M. Guica and R. Monten, \( T\overline{T} \) and the mirage of a bulk cutoff, arXiv:1906.11251 [INSPIRE].
A. Lewkowycz, J. Liu, E. Silverstein and G. Torroba, \( T\overline{T} \) and EE, with implications for (A)dS subregion encodings, JHEP 04 (2020) 152 [arXiv:1909.13808] [INSPIRE].
L. Apolo, S. Detournay and W. Song, TsT, \( T\overline{T} \) and black strings, JHEP 06 (2020) 109 [arXiv:1911.12359] [INSPIRE].
Y. Li and Y. Zhou, Cutoff AdS3 versus \( \mathrm{T}\overline{\mathrm{T}} \) CFT2 in the large central charge sector: correlators of energy-momentum tensor, arXiv:2005.01693 [INSPIRE].
M. Baggio and A. Sfondrini, Strings on NS-NS backgrounds as integrable deformations, Phys. Rev. D 98 (2018) 021902 [arXiv:1804.01998] [INSPIRE].
G. Bonelli, N. Doroud and M. Zhu, \( T\overline{T} \)-deformations in closed form, JHEP 06 (2018) 149 [arXiv:1804.10967] [INSPIRE].
M. Baggio, A. Sfondrini, G. Tartaglino-Mazzucchelli and H. Walsh, On \( T\overline{T} \) deformations and supersymmetry, JHEP 06 (2019) 063 [arXiv:1811.00533] [INSPIRE].
C.-K. Chang, C. Ferko and S. Sethi, Supersymmetry and \( T\overline{T} \) deformations, JHEP 04 (2019) 131 [arXiv:1811.01895] [INSPIRE].
H. Jiang, A. Sfondrini and G. Tartaglino-Mazzucchelli, \( T\overline{T} \) deformations with \( \mathcal{N} \) = (0, 2) supersymmetry, Phys. Rev. D 100 (2019) 046017 [arXiv:1904.04760] [INSPIRE].
C.-K. Chang, C. Ferko, S. Sethi, A. Sfondrini and G. Tartaglino-Mazzucchelli, \( T\overline{T} \) flows and (2, 2) supersymmetry, Phys. Rev. D 101 (2020) 026008 [arXiv:1906.00467] [INSPIRE].
C. Ferko, H. Jiang, S. Sethi and G. Tartaglino-Mazzucchelli, Non-linear supersymmetry and \( T\overline{T} \)-like flows, JHEP 02 (2020) 016 [arXiv:1910.01599] [INSPIRE].
S. He, J.-R. Sun and Y. Sun, The correlation function of (1, 1) and (2, 2) supersymmetric theories with \( T\overline{T} \) deformation, JHEP 04 (2020) 100 [arXiv:1912.11461] [INSPIRE].
B. Le Floch and M. Mezei, Solving a family of \( T\overline{T} \)-like theories, arXiv:1903.07606 [INSPIRE].
R. Conti, S. Negro and R. Tateo, Conserved currents and \( T{\overline{T}}_s \) irrelevant deformations of 2D integrable field theories, JHEP 11 (2019) 120 [arXiv:1904.09141] [INSPIRE].
G. Hernández-Chifflet, S. Negro and A. Sfondrini, Flow Equations for Generalized \( T\overline{T} \) Deformations, Phys. Rev. Lett. 124 (2020) 200601 [arXiv:1911.12233] [INSPIRE].
M. Taylor, TT deformations in general dimensions, arXiv:1805.10287 [INSPIRE].
A. Belin, A. Lewkowycz and G. Sarosi, Gravitational path integral from the T2 deformation, JHEP 09 (2020) 156 [arXiv:2006.01835] [INSPIRE].
S. Datta and Y. Jiang, \( T\overline{T} \) deformed partition functions, JHEP 08 (2018) 106 [arXiv:1806.07426] [INSPIRE].
O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular invariance and uniqueness of \( T\overline{T} \) deformed CFT, JHEP 01 (2019) 086 [arXiv:1808.02492] [INSPIRE].
J. Cardy, \( T\overline{T} \) deformations of non-Lorentz invariant field theories, arXiv:1809.07849 [INSPIRE].
Y. Jiang, Expectation value of \( T\overline{T} \) operator in curved spacetimes, JHEP 02 (2020) 094 [arXiv:1903.07561] [INSPIRE].
S. He and Y. Sun, Correlation functions of CFTs on a torus with a \( T\overline{T} \) deformation, Phys. Rev. D 102 (2020) 026023 [arXiv:2004.07486] [INSPIRE].
E. Beratto, M. Billò and M. Caselle, \( T\overline{T} \) deformation of the compactified boson and its interpretation in lattice gauge theory, Phys. Rev. D 102 (2020) 014504 [arXiv:1912.08654] [INSPIRE].
R. Conti, L. Iannella, S. Negro and R. Tateo, Generalised Born-Infeld models, Lax operators and the \( T\overline{T} \) perturbation, JHEP 11 (2018) 007 [arXiv:1806.11515] [INSPIRE].
L. Santilli and M. Tierz, Large N phase transition in \( T\overline{T} \)-deformed 2d Yang-Mills theory on the sphere, JHEP 01 (2019) 054 [arXiv:1810.05404] [INSPIRE].
A. Ireland and V. Shyam, \( T\overline{T} \) deformed YM2 on general backgrounds from an integral transformation, JHEP 07 (2020) 058 [arXiv:1912.04686] [INSPIRE].
E. Witten, Topological σ-models, Commun. Math. Phys. 118 (1988) 411 [INSPIRE].
E. Witten, Mirror manifolds and topological field theory, AMS/IP Stud. Adv. Math. 9 (1998) 121 [hep-th/9112056] [INSPIRE].
R.P. Malik, New topological field theories in two-dimensions, J. Phys. A 34 (2001) 4167 [hep-th/0012085] [INSPIRE].
E.A. Coleman, J. Aguilera-Damia, D.Z. Freedman and R.M. Soni, \( T\overline{T} \)-deformed actions and (1, 1) supersymmetry, JHEP 10 (2019) 080 [arXiv:1906.05439] [INSPIRE].
A.J. Tolley, \( T\overline{T} \) deformations, massive gravity and non-critical strings, JHEP 06 (2020) 050 [arXiv:1911.06142] [INSPIRE].
M. Atiyah, Topological quantum field theories, Inst. Hautes Etudes Sci. Publ. Math. 68 (1989) 175 [INSPIRE].
G.B. Segal, The definition of conformal field theory, in Differential geometrical methods in theoretical physics, K. Bleuler and M. Werner, Springer, Germany (1988).
E.A. Mazenc, V. Shyam and R.M. Soni, A \( T\overline{T} \) deformation for curved spacetimes from 3d gravity, arXiv:1912.09179 [INSPIRE].
M. Dedushenko, Gluing. Part I. Integrals and symmetries, JHEP 04 (2020) 175 [arXiv:1807.04274] [INSPIRE].
M. Blau and G. Thompson, Lectures on 2 − D gauge theories: Topological aspects and path integral techniques, in the proceedings of the Summer School in High-energy Physics and Cosmology, June 14–July 30, Trieste, Italy (1993), hep-th/9310144 [INSPIRE].
O. Ganor, J. Sonnenschein and S. Yankielowicz, The string theory approach to generalized 2 − D Yang-Mills theory, Nucl. Phys. B 434 (1995) 139 [hep-th/9407114] [INSPIRE].
S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2 − D Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. B Proc. Suppl. 41 (1995) 184 [hep-th/9411210] [INSPIRE].
T.D. Brennan, C. Ferko and S. Sethi, A non-abelian analogue of DBI from \( T\overline{T} \), SciPost Phys. 8 (2020) 052 [arXiv:1912.12389] [INSPIRE].
M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings, Nucl. Phys. B 715 (2005) 304 [hep-th/0411280] [INSPIRE].
M. Blau and G. Thompson, Chern-Simons theory on S1 -bundles: Abelianisation and q-deformed Yang-Mills theory, JHEP 05 (2006) 003 [hep-th/0601068] [INSPIRE].
R. Oeckl, Two-dimensional quantum Yang-Mills theory with corners, J. Phys. A 41 (2008) 135401 [hep-th/0608218] [INSPIRE].
R. Iraso and P. Mnev, Two-dimensional Yang-Mills theory on surfaces with corners in Batalin-Vilkovisky formalism, Commun. Math. Phys. 370 (2019) 637 [arXiv:1806.04172] [INSPIRE].
M. Aganagic and K. Schaeffer, Refined black hole ensembles and topological strings, JHEP 01 (2013) 060 [arXiv:1210.1865] [INSPIRE].
C. Vafa, Two dimensional Yang-Mills, black holes and topological strings, hep-th/0406058 [INSPIRE].
S.G. Naculich and H.J. Schnitzer, Level-rank duality of the U (N) WZW model, Chern-Simons theory, and 2 − D qYM theory, JHEP 06 (2007) 023 [hep-th/0703089] [INSPIRE].
G.W. Moore and N. Seiberg, Taming the conformal zoo, Phys. Lett. B 220 (1989) 422 [INSPIRE].
N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti, D. Seminara and R.J. Szabo, Topological strings and large N phase transitions. I. Nonchiral expansion of q-deformed Yang-Mills theory, JHEP 01 (2006) 035 [hep-th/0509041] [INSPIRE].
N. Caporaso, M. Cirafici, L. Griguolo, S. Pasquetti, D. Seminara and R.J. Szabo, Topological strings and large N phase transitions. II. Chiral expansion of q-deformed Yang-Mills theory, JHEP 01 (2006) 036 [hep-th/0511043] [INSPIRE].
D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400 (1993) 181 [hep-th/9301068] [INSPIRE].
M.R. Douglas, Conformal field theory techniques for large N group theory, hep-th/9303159 [INSPIRE].
M.R. Douglas, Conformal field theory techniques in large N Yang-Mills theory, in the proceedings of the NATO Advanced Research Workshop on New Developments in String Theory, Conformal Models and Topological Field Theory, May 12–21, Cargese, France (1993), hep-th/9311130 [INSPIRE].
R. Dijkgraaf, R. Gopakumar, H. Ooguri and C. Vafa, Baby universes in string theory, Phys. Rev. D 73 (2006) 066002 [hep-th/0504221] [INSPIRE].
M.R. Douglas and V.A. Kazakov, Large N phase transition in continuum QCD in two-dimensions, Phys. Lett. B 319 (1993) 219 [hep-th/9305047] [INSPIRE].
D.J. Gross and A. Matytsin, Instanton induced large N phase transitions in two-dimensional and four-dimensional QCD, Nucl. Phys. B 429 (1994) 50 [hep-th/9404004] [INSPIRE].
X. Arsiwalla, R. Boels, M. Mariño and A. Sinkovics, Phase transitions in q-deformed 2 − D Yang-Mills theory and topological strings, Phys. Rev. D 73 (2006) 026005 [hep-th/0509002] [INSPIRE].
D. Jafferis and J. Marsano, A DK phase transition in q-deformed Yang-Mills on S2 and topological strings, hep-th/0509004 [INSPIRE].
A. Pipkin, A course on integral equations, Springer, Germany (1991).
R.J. Szabo, Instantons, topological strings and enumerative geometry, Adv. Math. Phys. 2010 (2010) 107857 [arXiv:0912.1509] [INSPIRE].
R.J. Szabo and M. Tierz, q-deformations of two-dimensional Yang-Mills theory: classification, categorification and refinement, Nucl. Phys. B 876 (2013) 234 [arXiv:1305.1580] [INSPIRE].
Z. Kökényesi, A. Sinkovics and R.J. Szabo, Refined Chern-Simons theory and (q, t)-deformed Yang-Mills theory: semi-classical expansion and planar limit, JHEP 10 (2013) 067 [arXiv:1306.1707] [INSPIRE].
W. Donnelly and V. Shyam, Entanglement entropy and \( T\overline{T} \) deformation, Phys. Rev. Lett. 121 (2018) 131602 [arXiv:1806.07444] [INSPIRE].
A. Gromov and R.A. Santos, Entanglement entropy in 2D non-abelian pure gauge theory, Phys. Lett. B 737 (2014) 60 [arXiv:1403.5035] [INSPIRE].
W. Donnelly, Entanglement entropy and nonabelian gauge symmetry, Class. Quant. Grav. 31 (2014) 214003 [arXiv:1406.7304] [INSPIRE].
W. Donnelly and G. Wong, Entanglement branes in a two-dimensional string theory, JHEP 09 (2017) 097 [arXiv:1610.01719] [INSPIRE].
W. Donnelly and G. Wong, Entanglement branes, modular flow, and extended topological quantum field theory, JHEP 10 (2019) 016 [arXiv:1811.10785] [INSPIRE].
W. Donnelly, S. Timmerman and N. Valdés-Meller, Entanglement entropy and the large N expansion of two-dimensional Yang-Mills theory, JHEP 04 (2020) 182 [arXiv:1911.09302] [INSPIRE].
M. Mézard, G. Parisi and M. Virasoro, Spin glass theory and beyond, World Scientific, Singapore (1987).
L. Griguolo, D. Seminara, R.J. Szabo and A. Tanzini, Black holes, instanton counting on toric singularities and q-deformed two-dimensional Yang-Mills theory, Nucl. Phys. B 772 (2007) 1 [hep-th/0610155] [INSPIRE].
A.A. Gerasimov and S.L. Shatashvili, Higgs bundles, gauge theories and quantum groups, Commun. Math. Phys. 277 (2008) 323 [hep-th/0609024] [INSPIRE].
A.A. Gerasimov and S.L. Shatashvili, Two-dimensional gauge theories and quantum integrable systems, Proc. Symp. Pure Math. 78 (2008) 239 [arXiv:0711.1472] [INSPIRE].
L. Müller, R.J. Szabo and L. Szegedy, Symmetry defects and orbifolds of two-dimensional Yang-Mills theory, arXiv:1907.04734 [INSPIRE].
I. Runkel and L. Szegedy, Area-dependent quantum field theory with defects, arXiv:1807.08196 [INSPIRE].
A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4d Superconformal Index from q-deformed 2d Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850] [INSPIRE].
D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].
V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, JHEP 12 (2012) 067 [arXiv:0906.0638] [INSPIRE].
S. Giombi and V. Pestun, Correlators of local operators and 1/8 BPS Wilson loops on S2 from 2d YM and matrix models, JHEP 10 (2010) 033 [arXiv:0906.1572] [INSPIRE].
S. Giombi and V. Pestun, The 1/2 BPS ’t Hooft loops in N = 4 SYM as instantons in 2d Yang-Mills, J. Phys. A 46 (2013) 095402 [arXiv:0909.4272] [INSPIRE].
Y. Wang, Taming defects in \( \mathcal{N} \) = 4 super-Yang-Mills, JHEP 08 (2020) 021 [arXiv:2003.11016] [INSPIRE].
S. Komatsu and Y. Wang, Non-perturbative defect one-point functions in planar \( \mathcal{N} \) = 4 super-Yang-Mills, Nucl. Phys. B 958 (2020) 115120 [arXiv:2004.09514] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2009.00657
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Santilli, L., Szabo, R.J. & Tierz, M. \( T\overline{T} \)-deformation of q-Yang-Mills theory. J. High Energ. Phys. 2020, 86 (2020). https://doi.org/10.1007/JHEP11(2020)086
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2020)086
Keywords
- Field Theories in Lower Dimensions
- Nonperturbative Effects
- Matrix Models