Skip to main content

Advertisement

SpringerLink
Fitting the strong coupling constant with soft-drop thrust
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 29 November 2019

Fitting the strong coupling constant with soft-drop thrust

  • Simone Marzani1,
  • Daniel Reichelt2,3,
  • Steffen Schumann2,
  • Gregory Soyez4 &
  • …
  • Vincent Theeuwes2,4 

Journal of High Energy Physics volume 2019, Article number: 179 (2019) Cite this article

  • 265 Accesses

  • 18 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Soft drop has been shown to reduce hadronisation effects at e+e− colliders for the thrust event shape. In this context, we perform fits of the strong coupling constant for the soft-drop thrust distribution at NLO+NLL accuracy to pseudo data generated by the Sherpa event generator. In particular, we focus on the impact of hadronisation corrections, which we estimate both with an analytical model and a Monte-Carlo based one, on the fitted value of αs(mZ). We find that grooming can reduce the size of the shift in the fitted value of αs due to hadronisation. In addition, we also explore the possibility of extending the fitting range down to significantly lower values of (one minus) thrust. Here, soft drop is shown to play a crucial role, allowing us to maintain good fit qualities and stable values of the fitted strong coupling. The results of these studies show that soft-drop thrust is a promising candidate for fitting αs at e+e− colliders with reduced impact of hadronisation effects.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  2. K. Maltman and T. Yavin, αs(MZ2) from hadronic τ decays, Phys. Rev. D 78 (2008) 094020 [arXiv:0807.0650] [INSPIRE].

  3. PACS-CS collaboration, Precise determination of the strong coupling constant in Nf = 2 + 1 lattice QCD with the Schrödinger functional scheme, JHEP 10 (2009) 053 [arXiv:0906.3906] [INSPIRE].

  4. C. McNeile et al., High-precision c and b masses and QCD coupling from current-current correlators in lattice and continuum QCD, Phys. Rev. D 82 (2010) 034512 [arXiv:1004.4285] [INSPIRE].

    ADS  Google Scholar 

  5. B. Blossier et al., The strong running coupling at τ and Z0 mass scales from lattice QCD, Phys. Rev. Lett. 108 (2012) 262002 [arXiv:1201.5770] [INSPIRE].

    Article  ADS  Google Scholar 

  6. B. Chakraborty et al., High-precision quark masses and QCD coupling from nf = 4 lattice QCD, Phys. Rev. D 91 (2015) 054508 [arXiv:1408.4169] [INSPIRE].

    ADS  Google Scholar 

  7. Fermilab Lattice, MILC collaboration, Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks, Phys. Rev. D 90 (2014) 074509 [arXiv:1407.3772] [INSPIRE].

  8. JADE collaboration, Determination of the strong coupling αs from hadronic event shapes with \( O\left({\alpha}_s^3\right) \) and resummed QCD predictions using JADE data, Eur. Phys. J. C 64 (2009) 351 [arXiv:0810.1389] [INSPIRE].

  9. G. Dissertori et al., Determination of the strong coupling constant using matched NNLO+NLLA predictions for hadronic event shapes in e+ e− annihilations, JHEP 08 (2009) 036 [arXiv:0906.3436] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Dissertori et al., Precise determination of the strong coupling constant at NNLO in QCD from the three-jet rate in electron-positron annihilation at LEP, Phys. Rev. Lett. 104 (2010) 072002 [arXiv:0910.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  11. OPAL collaboration, Determination of αs using OPAL hadronic event shapes at \( \sqrt{s} \) = 91–209 GeV and resummed NNLO calculations, Eur. Phys. J. C 71 (2011) 1733 [arXiv:1101.1470] [INSPIRE].

  12. JADE collaboration, Measurement of the strong coupling αs from the three-jet rate in e+ e− -annihilation using JADE data, Eur. Phys. J. C 73 (2013) 2332 [arXiv:1205.3714] [INSPIRE].

  13. R.A. Davison and B.R. Webber, Non-perturbative contribution to the thrust distribution in e+e− annihilation, Eur. Phys. J. C 59 (2009) 13 [arXiv:0809.3326] [INSPIRE].

    Article  ADS  Google Scholar 

  14. R. Abbate et al., Thrust at N3 LL with power corrections and a precision global fit for αs(mZ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].

    ADS  Google Scholar 

  15. T. Gehrmann, G. Luisoni and P.F. Monni, Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution, Eur. Phys. J. C 73 (2013) 2265 [arXiv:1210.6945] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N3LL’ including power corrections, Phys. Rev. D 91 (2015) 094017 [arXiv:1411.6633] [INSPIRE].

    ADS  Google Scholar 

  17. E. Farhi, A QCD test for jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Abbate et al., Precision thrust cumulant moments at N3LL, Phys. Rev. D 86 (2012) 094002 [arXiv:1204.5746] [INSPIRE].

    ADS  Google Scholar 

  19. J. Baron, S. Marzani and V. Theeuwes, Soft-drop thrust, JHEP 08 (2018) 105 [arXiv:1803.04719] [INSPIRE].

    Article  ADS  Google Scholar 

  20. J.R. Andersen et al., Les Houches 2017: physics at TeV colliders standard model working group report, arXiv:1803.07977.

  21. S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets: an introduction to jet substructure and boosted-object phenomenology, arXiv:1901.10342 [INSPIRE].

  22. A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning, arXiv:1709.04464 [INSPIRE].

  23. R. Kogler et al., Jet substructure at the Large Hadron Collider: experimental review, arXiv:1803.06991 [INSPIRE].

  24. A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].

    Article  ADS  Google Scholar 

  25. E. Bothmann et al., Event generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034 [arXiv:1905.09127] [INSPIRE].

  26. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

  27. Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

  28. M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, hep-ph/9907280 [INSPIRE].

  29. J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].

    Article  ADS  Google Scholar 

  30. M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Kardos, G. Somogyi and Z. Trócsányi, Soft-drop event shapes in electron–positron annihilation at next-to-next-to-leading order accuracy, Phys. Lett. B 786 (2018) 313 [arXiv:1807.11472] [INSPIRE].

  34. S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP 07 (2017) 132 [arXiv:1704.02210] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].

  36. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  37. A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

  38. E. Gerwick, S. Hoeche, S. Marzani and S. Schumann, Soft evolution of multi-jet final states, JHEP 02 (2015) 106 [arXiv:1411.7325] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders, JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e+e− event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  41. R.W.L. Jones et al., Theoretical uncertainties on αs from event shape variables in e+e− annihilations, JHEP 12 (2003) 007 [hep-ph/0312016] [INSPIRE].

  42. S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].

    Article  ADS  Google Scholar 

  43. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

  44. S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].

    Article  ADS  Google Scholar 

  46. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J.-C. Winter, F. Krauss and G. Soff, A modified cluster hadronization model, Eur. Phys. J. C 36 (2004) 381 [hep-ph/0311085] [INSPIRE].

  48. T. Sjöstrand, The Lund Monte Carlo for jet fragmentation, Comput. Phys. Commun. 27 (1982) 243 [INSPIRE].

    Article  ADS  Google Scholar 

  49. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  50. A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    Article  ADS  Google Scholar 

  51. T. Gehrmann et al., NLO QCD matrix elements + parton showers in e+e− → hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE].

    Article  ADS  Google Scholar 

  52. ALEPH collaboration, Studies of QCD at e+e− centre-of-mass energies between 91 GeV and 209 GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].

  53. S. Höche, D. Reichelt and F. Siegert, Momentum conservation and unitarity in parton showers and NLL resummation, JHEP 01 (2018) 118 [arXiv:1711.03497] [INSPIRE].

    Article  ADS  Google Scholar 

  54. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  55. M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

    Article  ADS  Google Scholar 

  56. S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J. C 75 (2015) 461 [arXiv:1506.05057] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Verbytskyi et al., High precision determination of αs from a global fit of jet rates, JHEP 08 (2019) 129 [arXiv:1902.08158] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Nonperturbative corrections to soft drop jet mass, arXiv:1906.11843 [INSPIRE].

  59. A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [INSPIRE].

    Article  ADS  Google Scholar 

  61. S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after soft drop, Eur. Phys. J. C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].

    Article  ADS  Google Scholar 

  62. A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e+e− annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126] [INSPIRE].

    Article  ADS  Google Scholar 

  63. S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].

    Article  ADS  Google Scholar 

  64. J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].

  65. B.R. Webber, A QCD model for jet fragmentation including soft gluon interference, Nucl. Phys. B 238 (1984) 492 [INSPIRE].

    Article  ADS  Google Scholar 

  66. S. Gieseke, C. Rohr and A. Siodmok, Colour reconnections in HERWIG++, Eur. Phys. J. C 72 (2012) 2225 [arXiv:1206.0041] [INSPIRE].

    Article  ADS  Google Scholar 

  67. D. Reichelt, P. Richardson and A. Siodmok, Improving the simulation of quark and gluon jets with HERWIG 7, Eur. Phys. J. C 77 (2017) 876 [arXiv:1708.01491] [INSPIRE].

    Article  ADS  Google Scholar 

  68. R. Corke and T. Sjöstrand, Interleaved parton showers and tuning prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dipartimento di Fisica, Università di Genova and INFN — Sezione di Genova, Via Dodecaneso 33, 16146, Genoa, Italy

    Simone Marzani

  2. Institut für Theoretische Physik, Georg-August-Universität Gttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany

    Daniel Reichelt, Steffen Schumann & Vincent Theeuwes

  3. Fermi National Accelerator Laboratory, Batavia, IL, 60510-0500, U.S.A.

    Daniel Reichelt

  4. Institut de Physique Théorique, Paris Saclay University, CEA, CNRS, F-91191, Gif-sur-Yvette, France

    Gregory Soyez & Vincent Theeuwes

Authors
  1. Simone Marzani
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Daniel Reichelt
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Steffen Schumann
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Gregory Soyez
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Vincent Theeuwes
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Vincent Theeuwes.

Additional information

ArXiv ePrint: 1906.10504

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marzani, S., Reichelt, D., Schumann, S. et al. Fitting the strong coupling constant with soft-drop thrust. J. High Energ. Phys. 2019, 179 (2019). https://doi.org/10.1007/JHEP11(2019)179

Download citation

  • Received: 02 July 2019

  • Revised: 25 September 2019

  • Accepted: 14 November 2019

  • Published: 29 November 2019

  • DOI: https://doi.org/10.1007/JHEP11(2019)179

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jets
  • QCD Phenomenology
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.