BaBar collaboration, Evidence for an excess of \( \overline{B} \) → D(∗) τ − \( \overline{\nu} \)τ decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
BaBar collaboration, Measurement of an excess of \( \overline{B} \) → D(∗) τ − \( \overline{\nu} \)τ decays and implications for charged Higgs bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
Belle collaboration, Measurement of the branching ratio of \( \overline{B} \) → D(∗) τ − \( \overline{\nu} \)τ relative to \( \overline{B} \) → D(∗) ℓ− \( \overline{\nu} \)ℓ decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
Belle collaboration, Measurement of the τ lepton polarization and R(D∗) in the decay \( \overline{B} \) → D∗ τ − \( \overline{\nu} \)τ , Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
BELLE collaboration, Measurement of the τ lepton polarization and R(D∗ ) in the decay \( \overline{B} \) → D∗ τ − \( \overline{\nu} \)τ with one-prong hadronic τ decays at Belle, Phys. Rev. D 97 (2018) 012004 [arXiv:1709.00129] [INSPIRE].
Belle collaboration, Measurement of ℛ(D) and ℛ(D∗ ) with a semileptonic tagging method, arXiv:1904.08794 [INSPIRE].
LHCb collaboration, Measurement of the ratio of branching fractions ℬ (\( \overline{B} \)0 → D∗+ τ − \( \overline{\nu} \)τ)/ ℬ (\( \overline{B} \)0 → D∗+ μ− \( \overline{\nu} \)μ), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
LHCb collaboration, Test of lepton flavor universality by the measurement of the B0 → D∗− τ + ντ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].
HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
P. Biancofiore, P. Colangelo and F. De Fazio, On the anomalous enhancement observed in B → D(∗) τ \( \overline{\nu} \)τ decays, Phys. Rev. D 87 (2013) 074010 [arXiv:1302.1042] [INSPIRE].
M. Duraisamy and A. Datta, The Full B → D∗ τ − \( \overline{\nu} \)τ angular distribution and CP-violating triple products, JHEP 09 (2013) 059 [arXiv:1302.7031] [INSPIRE].
ADS
Article
Google Scholar
S. Fajfer, J.F. Kamenik and I. Nisandzic, On the B → D∗ τ \( \overline{\nu} \)τ sensitivity to new physics, Phys. Rev. D 85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].
M. Tanaka, Charged Higgs effects on exclusive semitauonic B decays, Z. Phys. C 67 (1995) 321 [hep-ph/9411405] [INSPIRE].
M. Tanaka and R. Watanabe, τ longitudinal polarization in B → Dτν and its role in the search for charged Higgs boson, Phys. Rev. D 82 (2010) 034027 [arXiv:1005.4306] [INSPIRE].
Y. Sakaki and H. Tanaka, Constraints on the charged scalar effects using the forward-backward asymmetry on B− → D(∗) τ ν− τ , Phys. Rev. D 87 (2013) 054002 [arXiv:1205.4908] [INSPIRE].
A. Datta, M. Duraisamy and D. Ghosh, Diagnosing New Physics in b → cτντ decays in the light of the recent BaBar result, Phys. Rev. D 86 (2012) 034027 [arXiv:1206.3760] [INSPIRE].
M.A. Ivanov, J.G. Körner and C.T. Tran, Exclusive decays B → ℓ − \( \overline{\nu} \) and B → D(∗)ℓ − \( \overline{\nu} \) in the covariant quark model, Phys. Rev. D 92 (2015) 114022 [arXiv:1508.02678] [INSPIRE].
D. Becirevic, S. Fajfer, I. Nisandzic and A. Tayduganov, Angular distributions of \( \overline{B} \) → D(∗) ℓ\( \overline{\nu} \)ℓ decays and search of New Physics, Nucl. Phys. B 946 (2019) 114707 [arXiv:1602.03030] [INSPIRE].
MathSciNet
Article
Google Scholar
R. Alonso, A. Kobach and J. Martin Camalich, New physics in the kinematic distributions of \( \overline{B} \)→ D(∗) τ − (→ℓ \( \overline{\nu} \) − ν̄ ντ ) \( \overline{\nu} \)τ , Phys. Rev. D 94 (2016) 094021 [arXiv:1602.07671] [INSPIRE].
A.K. Alok, D. Kumar, S. Kumbhakar and S.U. Sankar, D∗ polarization as a probe to discriminate new physics in \( \overline{B} \) → D∗ τ \( \overline{\nu} \), Phys. Rev. B 95 (2017) 115038 [arXiv:1606.03164] [INSPIRE].
Google Scholar
D. Bardhan, P. Byakti and D. Ghosh, A closer look at the RD and RD∗ anomalies, JHEP 01 (2017) 125 [arXiv:1610.03038] [INSPIRE].
ADS
Article
Google Scholar
M.A. Ivanov, J.G. Körner and C.-T. Tran, Probing new physics in \( \overline{B} \)0 → D(∗) τ − \( \overline{\nu} \)τ using the longitudinal, transverse and normal polarization components of the tau lepton, Phys. Rev. D 95 (2017) 036021 [arXiv:1701.02937] [INSPIRE].
R. Alonso, J. Martin Camalich and S. Westhoff, τ properties in B → Dτν from visible final-state kinematics, Phys. Rev. D 95 (2017) 093006 [arXiv:1702.02773] [INSPIRE].
P. Asadi, M.R. Buckley and D. Shih, Asymmetry observables and the origin of RD(∗) anomalies, Phys. Rev. D 99 (2019) 035015 [arXiv:1810.06597] [INSPIRE].
P. Colangelo and F. De Fazio, Scrutinizing \( \overline{B} \) → D∗ (Dπ) ℓ-\( \overline{\nu} \)ℓ and \( \overline{B} \) → D∗ (Dγ) ℓ − \( \overline{\nu} \)ℓ in search of new physics footprints, JHEP 06 (2018) 082 [arXiv:1801.10468] [INSPIRE].
ADS
Article
Google Scholar
Belle collaboration, Measurement of the D∗− polarization in the decay B0 → D∗− τ + ντ , talk given at the 10th International Workshop on the CKM Unitarity Triangle (CKM 2018), September 17–21, Heidelberg, Germany (2018), arXiv:1903.03102 [INSPIRE].
M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B} \)→ D(∗) τ \( \overline{\nu} \), Phys. Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].
Z.-R. Huang et al., Footprints of new physics in b → cτν transitions, Phys. Rev. D 98 (2018) 095018 [arXiv:1808.03565] [INSPIRE].
S. Bhattacharya, S. Nandi and S. Kumar Patra, b → cτντ decays: a catalogue to compare, constrain and correlate new physics effects, Eur. Phys. J. C 79 (2019) 268 [arXiv:1805.08222] [INSPIRE].
D. Bečirević, M. Fedele, I. Nišanďzić and A. Tayduganov, Lepton Flavor Universality tests through angular observables of \( \overline{B} \) → D(∗) ℓ\( \overline{\nu} \) decay modes, arXiv:1907.02257 [INSPIRE].
A.K. Alok et al., New physics in b → sμ+ μ− : CP-violating observables, JHEP 11 (2011) 122 [arXiv:1103.5344] [INSPIRE].
ADS
Article
Google Scholar
LHCb collaboration, Differential branching fraction and angular analysis of the decay B0 → K ∗0 μ+ μ− , JHEP 08 (2013) 131 [arXiv:1304.6325] [INSPIRE].
G.A. Cowan, D.C. Craik and M.D. Needham, RapidSim: an application for the fast simulation of heavy-quark hadron decays, Comput. Phys. Commun. 214 (2017) 239 [arXiv:1612.07489] [INSPIRE].
ADS
Article
Google Scholar
R. Brun and F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].
ADS
Article
Google Scholar
M. Cacciari, S. Frixione and P. Nason, The pT spectrum in heavy flavor photoproduction, JHEP 03 (2001) 006 [hep-ph/0102134] [INSPIRE].
D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
ADS
Article
Google Scholar
N. Isgur, D. Scora, B. Grinstein and M.B. Wise, Semileptonic B and D Decays in the Quark Model, Phys. Rev. D 39 (1989) 799 [INSPIRE].
ADS
Google Scholar
M. Chrzaszcz, T. Przedzinski, Z. Was and J. Zaremba, TAUOLA of τ lepton decays — Framework for hadronic currents, matrix elements and anomalous decays, Comput. Phys. Commun. 232 (2018) 220 [arXiv:1609.04617] [INSPIRE].
ADS
Article
Google Scholar
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
A. Poluektov, TensorFlowAnalysis, https://gitlab.cern.ch/poluekt/TensorFlowAnalysis (2019).
M. Abadi et al., TensorFlow: large-scale machine learning on heterogeneous systems, http://tensorflow.org/ (2015).
F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].
ADS
Article
Google Scholar
I. Caprini, L. Lellouch and M. Neubert, Dispersive bounds on the shape of \( \overline{B} \)→ D(∗) lepton anti-neutrino form-factors, Nucl. Phys. B 530 (1998) 153 [hep-ph/9712417] [INSPIRE].
S. Duell et al., HAMMER: reweighting tool for simulated data samples, PoS(ICHEP2016)1074.
Z. Ligeti, M. Papucci and D.J. Robinson, New physics in the visible final states of B → D(∗) τν, JHEP 01 (2017) 083 [arXiv:1610.02045] [INSPIRE].
ADS
Article
Google Scholar
F. Pedregosa et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825.
MathSciNet
MATH
Google Scholar
LHCb collaboration, Physics case for an LHCb Upgrade II — Opportunities in flavour physics and beyond, in the HL-LHC era, arXiv:1808.08865 [INSPIRE].
B. Shwartz, The Belle II experiment, Nucl. Part. Phys. Proc. 260 (2015) 233.
Article
Google Scholar
Belle-II collaboration, The Belle II physics book, arXiv:1808.10567 [INSPIRE].
R.J. Barlow and C. Beeston, Fitting using finite Monte Carlo samples, Comput. Phys. Commun. 77 (1993) 219 [INSPIRE].
ADS
Article
Google Scholar
D. London, CP Violation in \( \overline{B} \)0 → D∗+ ℓ −\( \overline{\nu} \)ℓ, talk given at the 17th Conference on Flavor Physics and CP-violation (FPCP 2019), May 6–10, Victoria, Canada (2019), arXiv:1906.07752 [INSPIRE].