Abstract
Reconstruction of the B0 → D∗−τ +ντ angular distribution is complicated by the strongly biasing effect of losing the neutrino information from both the B and τ decays. In this work, a novel method for making unbiased measurements of the angular coefficients while preserving the model independence of the angular technique is demonstrated. The twelve angular functions that describe the signal decay, in addition to background terms, are modelled in a multidimensional fit, using template probability density functions that encapsulate all resolution and acceptance effects. Sensitivities at the LHCb and Belle II experiments are estimated, and sources of systematic uncertainty are discussed, notably in the extrapolation to a measurement of R(D∗).
Article PDF
References
BaBar collaboration, Evidence for an excess of \( \overline{B} \) → D(∗) τ − \( \overline{\nu} \)τ decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].
BaBar collaboration, Measurement of an excess of \( \overline{B} \) → D(∗) τ − \( \overline{\nu} \)τ decays and implications for charged Higgs bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].
Belle collaboration, Measurement of the branching ratio of \( \overline{B} \) → D(∗) τ − \( \overline{\nu} \)τ relative to \( \overline{B} \) → D(∗) ℓ− \( \overline{\nu} \)ℓ decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].
Belle collaboration, Measurement of the τ lepton polarization and R(D∗) in the decay \( \overline{B} \) → D∗ τ − \( \overline{\nu} \)τ , Phys. Rev. Lett. 118 (2017) 211801 [arXiv:1612.00529] [INSPIRE].
BELLE collaboration, Measurement of the τ lepton polarization and R(D∗ ) in the decay \( \overline{B} \) → D∗ τ − \( \overline{\nu} \)τ with one-prong hadronic τ decays at Belle, Phys. Rev. D 97 (2018) 012004 [arXiv:1709.00129] [INSPIRE].
Belle collaboration, Measurement of ℛ(D) and ℛ(D∗ ) with a semileptonic tagging method, arXiv:1904.08794 [INSPIRE].
LHCb collaboration, Measurement of the ratio of branching fractions ℬ (\( \overline{B} \)0 → D∗+ τ − \( \overline{\nu} \)τ)/ ℬ (\( \overline{B} \)0 → D∗+ μ− \( \overline{\nu} \)μ), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015) 159901] [arXiv:1506.08614] [INSPIRE].
LHCb collaboration, Test of lepton flavor universality by the measurement of the B0 → D∗− τ + ντ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018) 072013 [arXiv:1711.02505] [INSPIRE].
HFLAV collaboration, Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2016, Eur. Phys. J. C 77 (2017) 895 [arXiv:1612.07233] [INSPIRE].
P. Biancofiore, P. Colangelo and F. De Fazio, On the anomalous enhancement observed in B → D(∗) τ \( \overline{\nu} \)τ decays, Phys. Rev. D 87 (2013) 074010 [arXiv:1302.1042] [INSPIRE].
M. Duraisamy and A. Datta, The Full B → D∗ τ − \( \overline{\nu} \)τ angular distribution and CP-violating triple products, JHEP 09 (2013) 059 [arXiv:1302.7031] [INSPIRE].
S. Fajfer, J.F. Kamenik and I. Nisandzic, On the B → D∗ τ \( \overline{\nu} \)τ sensitivity to new physics, Phys. Rev. D 85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].
M. Tanaka, Charged Higgs effects on exclusive semitauonic B decays, Z. Phys. C 67 (1995) 321 [hep-ph/9411405] [INSPIRE].
M. Tanaka and R. Watanabe, τ longitudinal polarization in B → Dτν and its role in the search for charged Higgs boson, Phys. Rev. D 82 (2010) 034027 [arXiv:1005.4306] [INSPIRE].
Y. Sakaki and H. Tanaka, Constraints on the charged scalar effects using the forward-backward asymmetry on B− → D(∗) τ ν− τ , Phys. Rev. D 87 (2013) 054002 [arXiv:1205.4908] [INSPIRE].
A. Datta, M. Duraisamy and D. Ghosh, Diagnosing New Physics in b → cτντ decays in the light of the recent BaBar result, Phys. Rev. D 86 (2012) 034027 [arXiv:1206.3760] [INSPIRE].
M.A. Ivanov, J.G. Körner and C.T. Tran, Exclusive decays B → ℓ − \( \overline{\nu} \) and B → D(∗)ℓ − \( \overline{\nu} \) in the covariant quark model, Phys. Rev. D 92 (2015) 114022 [arXiv:1508.02678] [INSPIRE].
D. Becirevic, S. Fajfer, I. Nisandzic and A. Tayduganov, Angular distributions of \( \overline{B} \) → D(∗) ℓ\( \overline{\nu} \)ℓ decays and search of New Physics, Nucl. Phys. B 946 (2019) 114707 [arXiv:1602.03030] [INSPIRE].
R. Alonso, A. Kobach and J. Martin Camalich, New physics in the kinematic distributions of \( \overline{B} \)→ D(∗) τ − (→ℓ \( \overline{\nu} \) − ν̄ ντ ) \( \overline{\nu} \)τ , Phys. Rev. D 94 (2016) 094021 [arXiv:1602.07671] [INSPIRE].
A.K. Alok, D. Kumar, S. Kumbhakar and S.U. Sankar, D∗ polarization as a probe to discriminate new physics in \( \overline{B} \) → D∗ τ \( \overline{\nu} \), Phys. Rev. B 95 (2017) 115038 [arXiv:1606.03164] [INSPIRE].
D. Bardhan, P. Byakti and D. Ghosh, A closer look at the RD and RD∗ anomalies, JHEP 01 (2017) 125 [arXiv:1610.03038] [INSPIRE].
M.A. Ivanov, J.G. Körner and C.-T. Tran, Probing new physics in \( \overline{B} \)0 → D(∗) τ − \( \overline{\nu} \)τ using the longitudinal, transverse and normal polarization components of the tau lepton, Phys. Rev. D 95 (2017) 036021 [arXiv:1701.02937] [INSPIRE].
R. Alonso, J. Martin Camalich and S. Westhoff, τ properties in B → Dτν from visible final-state kinematics, Phys. Rev. D 95 (2017) 093006 [arXiv:1702.02773] [INSPIRE].
P. Asadi, M.R. Buckley and D. Shih, Asymmetry observables and the origin of RD(∗) anomalies, Phys. Rev. D 99 (2019) 035015 [arXiv:1810.06597] [INSPIRE].
P. Colangelo and F. De Fazio, Scrutinizing \( \overline{B} \) → D∗ (Dπ) ℓ-\( \overline{\nu} \)ℓ and \( \overline{B} \) → D∗ (Dγ) ℓ − \( \overline{\nu} \)ℓ in search of new physics footprints, JHEP 06 (2018) 082 [arXiv:1801.10468] [INSPIRE].
Belle collaboration, Measurement of the D∗− polarization in the decay B0 → D∗− τ + ντ , talk given at the 10th International Workshop on the CKM Unitarity Triangle (CKM 2018), September 17–21, Heidelberg, Germany (2018), arXiv:1903.03102 [INSPIRE].
M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B} \)→ D(∗) τ \( \overline{\nu} \), Phys. Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].
Z.-R. Huang et al., Footprints of new physics in b → cτν transitions, Phys. Rev. D 98 (2018) 095018 [arXiv:1808.03565] [INSPIRE].
S. Bhattacharya, S. Nandi and S. Kumar Patra, b → cτντ decays: a catalogue to compare, constrain and correlate new physics effects, Eur. Phys. J. C 79 (2019) 268 [arXiv:1805.08222] [INSPIRE].
D. Bečirević, M. Fedele, I. Nišanďzić and A. Tayduganov, Lepton Flavor Universality tests through angular observables of \( \overline{B} \) → D(∗) ℓ\( \overline{\nu} \) decay modes, arXiv:1907.02257 [INSPIRE].
A.K. Alok et al., New physics in b → sμ+ μ− : CP-violating observables, JHEP 11 (2011) 122 [arXiv:1103.5344] [INSPIRE].
LHCb collaboration, Differential branching fraction and angular analysis of the decay B0 → K ∗0 μ+ μ− , JHEP 08 (2013) 131 [arXiv:1304.6325] [INSPIRE].
G.A. Cowan, D.C. Craik and M.D. Needham, RapidSim: an application for the fast simulation of heavy-quark hadron decays, Comput. Phys. Commun. 214 (2017) 239 [arXiv:1612.07489] [INSPIRE].
R. Brun and F. Rademakers, ROOT: an object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].
M. Cacciari, S. Frixione and P. Nason, The pT spectrum in heavy flavor photoproduction, JHEP 03 (2001) 006 [hep-ph/0102134] [INSPIRE].
D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
N. Isgur, D. Scora, B. Grinstein and M.B. Wise, Semileptonic B and D Decays in the Quark Model, Phys. Rev. D 39 (1989) 799 [INSPIRE].
M. Chrzaszcz, T. Przedzinski, Z. Was and J. Zaremba, TAUOLA of τ lepton decays — Framework for hadronic currents, matrix elements and anomalous decays, Comput. Phys. Commun. 232 (2018) 220 [arXiv:1609.04617] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
A. Poluektov, TensorFlowAnalysis, https://gitlab.cern.ch/poluekt/TensorFlowAnalysis (2019).
M. Abadi et al., TensorFlow: large-scale machine learning on heterogeneous systems, http://tensorflow.org/ (2015).
F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun. 10 (1975) 343 [INSPIRE].
I. Caprini, L. Lellouch and M. Neubert, Dispersive bounds on the shape of \( \overline{B} \)→ D(∗) lepton anti-neutrino form-factors, Nucl. Phys. B 530 (1998) 153 [hep-ph/9712417] [INSPIRE].
S. Duell et al., HAMMER: reweighting tool for simulated data samples, PoS(ICHEP2016)1074.
Z. Ligeti, M. Papucci and D.J. Robinson, New physics in the visible final states of B → D(∗) τν, JHEP 01 (2017) 083 [arXiv:1610.02045] [INSPIRE].
F. Pedregosa et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825.
LHCb collaboration, Physics case for an LHCb Upgrade II — Opportunities in flavour physics and beyond, in the HL-LHC era, arXiv:1808.08865 [INSPIRE].
B. Shwartz, The Belle II experiment, Nucl. Part. Phys. Proc. 260 (2015) 233.
Belle-II collaboration, The Belle II physics book, arXiv:1808.10567 [INSPIRE].
R.J. Barlow and C. Beeston, Fitting using finite Monte Carlo samples, Comput. Phys. Commun. 77 (1993) 219 [INSPIRE].
D. London, CP Violation in \( \overline{B} \)0 → D∗+ ℓ −\( \overline{\nu} \)ℓ, talk given at the 17th Conference on Flavor Physics and CP-violation (FPCP 2019), May 6–10, Victoria, Canada (2019), arXiv:1906.07752 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1908.04643
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Hill, D., John, M., Ke, W. et al. Model-independent method for measuring the angular coefficients of B0 → D∗−τ +ντ decays. J. High Energ. Phys. 2019, 133 (2019). https://doi.org/10.1007/JHEP11(2019)133
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2019)133