Skip to main content

Does boundary distinguish complexities?

A preprint version of the article is available at arXiv.

Abstract

Recently, Chapman et al. argued that holographic complexities for defects distinguish action from volume. Motivated by their work, we study complexity of quantum states in conformal field theory with boundary. In generic two-dimensional BCFT, we work on the path-integral optimization which gives one of field-theoretic definitions for the complexity. We also perform holographic computations of the complexity in Takayanagi’s AdS/BCFT model following by the “complexity = volume” conjecture and “complexity = action” conjecture. We find that increments of the complexity due to the boundary show the same divergent structures in these models except for the CA complexity in the AdS3/BCFT2 model as the argument by Chapman et al. . Thus, we conclude that boundary does not distinguish the complexities in general.

References

  1. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. M. Rangamani and T. Takayanagi, Holographic Entanglement Entropy, Lect. Notes Phys.931 (2017) pp.1 [arXiv:1609.01287] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  3. L. Susskind, Entanglement is not enough, Fortsch. Phys.64 (2016) 49 [arXiv:1411.0690] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys.64 (2016) 24 [arXiv:1402.5674] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. L. Susskind, Addendum to Computational Complexity and Black Hole Horizons, Fortsch. Phys.64 (2016) 44 [arXiv:1403.5695] [INSPIRE].

    ADS  Article  Google Scholar 

  6. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett.116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

    ADS  Article  Google Scholar 

  7. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev.D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

  8. M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Distance between Quantum States and Gauge-Gravity Duality, Phys. Rev. Lett.115 (2015) 261602 [arXiv:1507.07555] [INSPIRE].

    ADS  Article  Google Scholar 

  9. A. Belin, A. Lewkowycz and G. Sárosi, The boundary dual of the bulk symplectic form, Phys. Lett.B 789 (2019) 71 [arXiv:1806.10144] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. A. Belin, A. Lewkowycz and G. Sárosi, Complexity and the bulk volume, a new York time story, JHEP03 (2019) 044 [arXiv:1811.03097] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories, Phys. Rev. Lett.119 (2017) 071602 [arXiv:1703.00456] [INSPIRE].

  12. P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi and K. Watanabe, Liouville Action as Path-Integral Complexity: From Continuous Tensor Networks to AdS/CFT, JHEP11 (2017) 097 [arXiv:1706.07056] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. R. Jefferson and R.C. Myers, Circuit complexity in quantum field theory, JHEP10 (2017) 107 [arXiv:1707.08570] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. H.A. Camargo, M.P. Heller, R. Jefferson and J. Knaute, Path integral optimization as circuit complexity, Phys. Rev. Lett.123 (2019) 011601 [arXiv:1904.02713] [INSPIRE].

  15. A. Bhattacharyya, P. Caputa, S.R. Das, N. Kundu, M. Miyaji and T. Takayanagi, Path-Integral Complexity for Perturbed CFTs, JHEP07 (2018) 086 [arXiv:1804.01999] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. T. Takayanagi, Holographic Spacetimes as Quantum Circuits of Path-Integrations, JHEP12 (2018) 048 [arXiv:1808.09072] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. S. Chapman, M.P. Heller, H. Marrochio and F. Pastawski, Toward a Definition of Complexity for Quantum Field Theory States, Phys. Rev. Lett.120 (2018) 121602 [arXiv:1707.08582] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. P. Caputa and J.M. Magan, Quantum Computation as Gravity, Phys. Rev. Lett.122 (2019) 231302 [arXiv:1807.04422] [INSPIRE].

    ADS  Article  Google Scholar 

  19. S. Chapman, D. Ge and G. Policastro, Holographic Complexity for Defects Distinguishes Action from Volume, JHEP05 (2019) 049 [arXiv:1811.12549] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. T. Azeyanagi, A. Karch, T. Takayanagi and E.G. Thompson, Holographic calculation of boundary entropy, JHEP03 (2008) 054 [arXiv:0712.1850] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett.107 (2011) 101602 [arXiv:1105.5165] [INSPIRE].

    ADS  Article  Google Scholar 

  22. M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP11 (2011) 043 [arXiv:1108.5152] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. P. Braccia, A.L. Cotrone and E. Tonni, Complexity in the presence of a boundary, arXiv:1910.03489 [INSPIRE].

  24. M. Miyaji, T. Takayanagi and K. Watanabe, From path integrals to tensor networks for the AdS/CFT correspondence, Phys. Rev.D 95 (2017) 066004 [arXiv:1609.04645] [INSPIRE].

  25. V. Fateev, A.B. Zamolodchikov and A.B. Zamolodchikov, Boundary Liouville field theory. 1. Boundary state and boundary two point function, hep-th/0001012 [INSPIRE].

  26. M. Flory, A complexity/fidelity susceptibility g-theorem for AdS3 /BC F T2, JHEP06 (2017) 131 [arXiv:1702.06386] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. I. Affleck and A.W.W. Ludwig, Universal noninteger ‘ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett.67 (1991) 161 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. D. Friedan and A. Konechny, On the boundary entropy of one-dimensional quantum systems at low temperature, Phys. Rev. Lett.93 (2004) 030402 [hep-th/0312197] [INSPIRE].

  29. H. Casini, I.S. Landea and G. Torroba, The g-theorem and quantum information theory, JHEP10 (2016) 140 [arXiv:1607.00390] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. L. Lehner, R.C. Myers, E. Poisson and R.D. Sorkin, Gravitational action with null boundaries, Phys. Rev.D 94 (2016) 084046 [arXiv:1609.00207] [INSPIRE].

  31. G. Hayward, Gravitational action for space-times with nonsmooth boundaries, Phys. Rev.D 47 (1993) 3275 [INSPIRE].

    ADS  Google Scholar 

  32. S. Cooper, M. Rozali, B. Swingle, M. Van Raamsdonk, C. Waddell and D. Wakeham, Black Hole Microstate Cosmology, JHEP07 (2019) 065 [arXiv:1810.10601] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. T. Numasawa, Holographic Complexity for disentangled states, arXiv:1811.03597 [INSPIRE].

  34. I. Akal, Reflections on Virasoro circuit complexity and Berry phase, arXiv:1908.08514 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshiki Sato.

Additional information

ArXiv ePrint: 1908.11094

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sato, Y., Watanabe, K. Does boundary distinguish complexities?. J. High Energ. Phys. 2019, 132 (2019). https://doi.org/10.1007/JHEP11(2019)132

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2019)132

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory