The QCD axion and unification

Abstract

The QCD axion is one of the most appealing candidates for the dark matter in the Universe. In this article, we discuss the possibility to predict the axion mass in the context of a simple renormalizable grand unified theory where the Peccei-Quinn scale is determined by the unification scale. In this framework, the axion mass is predicted to be in the range ma ≃ (3–13) × 109 eV. We study the axion phenomenology and find that the ABRACADABRA and CASPEr-Electric experiments will be able to fully probe this mass window.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.38 (1977) 1440 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett.40 (1978) 279 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    S. Weinberg, A New Light Boson?, Phys. Rev. Lett.40 (1978) 223 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett.120B (1983) 127 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett.120B (1983) 133 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett.120B (1983) 137 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    G.G. Raffelt, Astrophysical methods to constrain axions and other novel particle phenomena, Phys. Rept.198 (1990) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    M. Dine, TASI lectures on the strong CP problem, in Flavor physics for the millennium. Proceedings, Theoretical Advanced Study Institute in elementary particle physics, TASI 2000, Boulder, U.S.A., 4–30 June 2000, pp. 349–369 (2000) [hep-ph/0011376] [INSPIRE].

  9. [9]

    P. Sikivie, Axion Cosmology, Lect. Notes Phys.741 (2008) 19 [astro-ph/0610440] [INSPIRE].

  10. [10]

    J.E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys.82 (2010) 557 [arXiv:0807.3125] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci.60 (2010) 405 [arXiv:1002.0329] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    P.W. Graham, I.G. Irastorza, S.K. Lamoreaux, A. Lindner and K.A. van Bibber, Experimental Searches for the Axion and Axion-Like Particles, Ann. Rev. Nucl. Part. Sci.65 (2015) 485 [arXiv:1602.00039] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    I.G. Irastorza and J. Redondo, New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys.102 (2018) 89 [arXiv:1801.08127] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP01 (2016) 034 [arXiv:1511.02867] [INSPIRE].

    Article  Google Scholar 

  15. [15]

    M. Gorghetto and G. Villadoro, Topological Susceptibility and QCD Axion Mass: QED and NNLO corrections, JHEP03 (2019) 033 [arXiv:1812.01008] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett.43 (1979) 103 [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys.B 166 (1980) 493 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys.31 (1980) 260 [INSPIRE].

    Google Scholar 

  19. [19]

    M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett.104B (1981) 199 [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    M.B. Wise, H. Georgi and S.L. Glashow, SU(5) and the Invisible Axion, Phys. Rev. Lett.47 (1981) 402 [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    P. Fileviez Perez, Renormalizable adjoint SU(5), Phys. Lett.B 654 (2007) 189 [hep-ph/0702287] [INSPIRE].

  22. [22]

    Y. Kahn, B.R. Safdi and J. Thaler, Broadband and Resonant Approaches to Axion Dark Matter Detection, Phys. Rev. Lett.117 (2016) 141801 [arXiv:1602.01086] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    D. Budker, P.W. Graham, M. Ledbetter, S. Rajendran and A. Sushkov, Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr), Phys. Rev.X 4 (2014) 021030 [arXiv:1306.6089] [INSPIRE].

  24. [24]

    H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett.32 (1974) 438 [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys. Lett.86B (1979) 297 [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    P. Fileviez Perez and C. Murgui, Renormalizable SU(5) Unification, Phys. Rev.D 94 (2016) 075014 [arXiv:1604.03377] [INSPIRE].

  27. [27]

    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett.81 (1998) 1171 [hep-ph/9805219] [INSPIRE].

  28. [28]

    B. Bajc and G. Senjanovíc, Seesaw at LHC, JHEP08 (2007) 014 [hep-ph/0612029] [INSPIRE].

  29. [29]

    P. Minkowski, μ → eγ at a Rate of One Out of 109Muon Decays?, Phys. Lett.67B (1977) 421 [INSPIRE].

  30. [30]

    R.N. Mohapatra and G. Senjanovíc, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE].

  31. [31]

    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc.C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  32. [32]

    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc.C 7902131 (1979) 95 [INSPIRE].

    Google Scholar 

  33. [33]

    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys.C 44 (1989) 441 [INSPIRE].

    Google Scholar 

  34. [34]

    R.T. Co, F. D’Eramo and L.J. Hall, Supersymmetric axion grand unified theories and their predictions, Phys. Rev.D 94 (2016) 075001 [arXiv:1603.04439] [INSPIRE].

  35. [35]

    S.M. Boucenna and Q. Shafi, Axion inflation, proton decay and leptogenesis in SU(5) × U(1)P Q , Phys. Rev.D 97 (2018) 075012 [arXiv:1712.06526] [INSPIRE].

  36. [36]

    L. Di Luzio, A. Ringwald and C. Tamarit, Axion mass prediction from minimal grand unification, Phys. Rev.D 98 (2018) 095011 [arXiv:1807.09769] [INSPIRE].

  37. [37]

    A. Ernst, A. Ringwald and C. Tamarit, Axion Predictions in SO(10) × U(1)PQ Models, JHEP02 (2018) 103 [arXiv:1801.04906] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    P. Fileviez Ṕerez, A. Gross and C. Murgui, Seesaw scale, unification and proton decay, Phys. Rev.D 98 (2018) 035032 [arXiv:1804.07831] [INSPIRE].

  39. [39]

    P. Fileviez Perez and M.B. Wise, On the Origin of Neutrino Masses, Phys. Rev.D 80 (2009) 053006 [arXiv:0906.2950] [INSPIRE].

  40. [40]

    D. Emmanuel-Costa, C. Simoes and M. Tortola, The minimal adjoint-SU(5) × Z4 GUT model, JHEP10 (2013) 054 [arXiv:1303.5699] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    P. Fileviez Perez, H. Iminniyaz and G. Rodrigo, Proton Stability, Dark Matter and Light Color Octet Scalars in Adjoint SU(5) Unification, Phys. Rev.D 78 (2008) 015013 [arXiv:0803.4156] [INSPIRE].

  42. [42]

    S. Blanchet and P. Fileviez Perez, Baryogenesis via Leptogenesis in Adjoint SU(5), JCAP08 (2008) 037 [arXiv:0807.3740] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    S. Blanchet and P. Fileviez Perez, On the Role of Low-Energy CP-violation in Leptogenesis, Mod. Phys. Lett.A 24 (2009) 1399 [arXiv:0810.1301] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    A. Hayreter and G. Valencia, LHC constraints on color octet scalars, Phys. Rev.D 96 (2017) 035004 [arXiv:1703.04164] [INSPIRE].

  45. [45]

    V. Miralles and A. Pich, LHC bounds on coloured scalars, arXiv:1910.07947 [INSPIRE].

  46. [46]

    Super-Kamiokande collaboration, Search for proton decay via p → ννK+using 260 kiloton · year data of Super-Kamiokande, Phys. Rev.D 90 (2014) 072005 [arXiv:1408.1195] [INSPIRE].

  47. [47]

    Hyper-Kamiokande Proto collaboration, The Hyper-Kamiokande Experiment, in Proceedings, Prospects in Neutrino Physics (NuPhys2016), London, U.K., 12–14 December 2016 (2017) [arXiv:1705.00306] [INSPIRE].

  48. [48]

    Super-Kamiokande collaboration, Search for proton decay via p → e+π0and p → μ+π0in 0.31 megaton · years exposure of the Super-Kamiokande water Cherenkov detector, Phys. Rev.D 95 (2017) 012004 [arXiv:1610.03597] [INSPIRE].

  49. [49]

    Super-Kamiokande collaboration, Search for Nucleon Decay via n → \( \overline{v} \)π0and p → \( \overline{v} \)π+in Super-Kamiokande, Phys. Rev. Lett.113 (2014) 121802 [arXiv:1305.4391] [INSPIRE].

  50. [50]

    A. Giveon, L.J. Hall and U. Sarid, SU(5) unification revisited, Phys. Lett.B 271 (1991) 138 [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  52. [52]

    P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept.441 (2007) 191 [hep-ph/0601023] [INSPIRE].

  53. [53]

    P. Fileviez Perez, Fermion mixings versus d = 6 proton decay, Phys. Lett.B 595 (2004) 476 [hep-ph/0403286] [INSPIRE].

  54. [54]

    K. Fujikawa, Path Integral for Gauge Theories with Fermions, Phys. Rev.D 21 (1980) 2848 [Erratum ibid.D 22 (1980) 1499] [INSPIRE].

  55. [55]

    Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  56. [56]

    R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral Estimate of the Electric Dipole Moment of the Neutron in Quantum Chromodynamics, Phys. Lett.88B (1979) 123 [Erratum ibid.B 91 (1980) 487] [INSPIRE].

  57. [57]

    M. Pospelov and A. Ritz, Theta vacua, QCD sum rules and the neutron electric dipole moment, Nucl. Phys.B 573 (2000) 177 [hep-ph/9908508] [INSPIRE].

  58. [58]

    T. Chupp, P. Fierlinger, M. Ramsey-Musolf and J. Singh, Electric dipole moments of atoms, molecules, nuclei and particles, Rev. Mod. Phys.91 (2019) 015001 [arXiv:1710.02504] [INSPIRE].

  59. [59]

    P.W. Graham and S. Rajendran, New Observables for Direct Detection of Axion Dark Matter, Phys. Rev.D 88 (2013) 035023 [arXiv:1306.6088] [INSPIRE].

  60. [60]

    R. Catena and P. Ullio, A novel determination of the local dark matter density, JCAP08 (2010) 004 [arXiv:0907.0018] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    D.F. Jackson Kimball et al., Overview of the Cosmic Axion Spin Precession Experiment (CASPEr), arXiv:1711.08999 [INSPIRE].

  62. [62]

    P. Svrček and E. Witten, Axions In String Theory, JHEP06 (2006) 051 [hep-th/0605206] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. [63]

    Y. Aoki, T. Izubuchi, E. Shintani and A. Soni, Improved lattice computation of proton decay matrix elements, Phys. Rev.D 96 (2017) 014506 [arXiv:1705.01338] [INSPIRE].

  64. [64]

    B.D. Fields, P. Molaro and S. Sarkar, Big-Bang Nucleosynthesis, Chin. Phys.C 38 (2014) 339 [arXiv:1412.1408] [INSPIRE].

    Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexis D. Plascencia.

Additional information

ArXiv ePrint: 1908.01772

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pérez, P.F., Murgui, C. & Plascencia, A.D. The QCD axion and unification. J. High Energ. Phys. 2019, 93 (2019). https://doi.org/10.1007/JHEP11(2019)093

Download citation

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • GUT