Skip to main content

Advertisement

SpringerLink
The QCD topological charge and its thermal dependence: the role of the η′
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 14 November 2019

The QCD topological charge and its thermal dependence: the role of the η′

  • A. Gómez Nicola1,
  • J. Ruiz de Elvira2 &
  • A. Vioque-Rodríguez1 

Journal of High Energy Physics volume 2019, Article number: 86 (2019) Cite this article

  • 230 Accesses

  • 12 Citations

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We analyze the contribution of the η′ (958) meson in the first two non-trivial moments of the QCD topological charge distribution, namely, the topological susceptibility and the fourth-order cumulant of the vacuum energy density. We perform our study within U(3) Chiral Perturbation Theory up to next-to-next-to-leading order in the combined chiral and large-Nc expansion. We also describe the temperature dependence of these two quantities and compare them with previous analyses in the literature. In particular, we discuss the validity of the thermal scaling of the topological susceptibility with the quark condensate, which is intimately connected with a Ward Identity relating both quantities. We also consider isospin breaking corrections from the vacuum misalignment at leading order in the U(3) framework.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. E. Witten, Current algebra theorems for the U(1) Goldstone boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Veneziano, U(1) without instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Di Vecchia and G. Veneziano, Chiral dynamics in the large N limit, Nucl. Phys. B 171 (1980) 253 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  5. H. Leutwyler and A.V. Smilga, Spectrum of Dirac operator and role of winding number in QCD, Phys. Rev. D 46 (1992) 5607 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. JLQCD, TWQCD collaboration, Topological susceptibility in two-flavor lattice QCD with exact chiral symmetry, Phys. Lett. B 665 (2008) 294 [arXiv:0710.1130] [INSPIRE].

  7. F. Bernardoni et al., Probing the chiral regime of Nf = 2 QCD with mixed actions, Phys. Rev. D 83 (2011) 054503 [arXiv:1008.1870] [INSPIRE].

  8. RBC, UKQCD collaboration, 2 + 1 flavor domain wall QCD on a (2 fm)∗83 lattice: Light meson spectroscopy with L(s) = 16, Phys. Rev. D 76 (2007) 014504 [hep-lat/0701013] [INSPIRE].

  9. TWQCD collaboration, Topological susceptibility in 2 + 1 flavors lattice QCD with domain-wall fermions, Phys. Lett. B 671 (2009) 135 [arXiv:0810.3406] [INSPIRE].

  10. V. Bernard, S. Descotes-Genon and G. Toucas, Topological susceptibility on the lattice and the three-flavour quark condensate, JHEP 06 (2012) 051 [arXiv:1203.0508] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 77 (2017) 112 [arXiv:1607.00299] [INSPIRE].

    Article  ADS  Google Scholar 

  12. C. Bonati et al., Axion phenomenology and θ-dependence from Nf = 2 + 1 lattice QCD, JHEP 03 (2016) 155 [arXiv:1512.06746] [INSPIRE].

    Article  ADS  Google Scholar 

  13. P. Petreczky, H.-P. Schadler and S. Sharma, The topological susceptibility in finite temperature QCD and axion cosmology, Phys. Lett. B 762 (2016) 498 [arXiv:1606.03145] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Borsányi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature 539 (2016) 69 [arXiv:1606.07494] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. Dimopoulos et al., Topological susceptibility and η′ meson mass from Nf = 2 lattice QCD at the physical point, Phys. Rev. D 99 (2019) 034511 [arXiv:1812.08787] [INSPIRE].

  16. F. Burger, E.-M. Ilgenfritz, M.P. Lombardo and A. Trunin, Chiral observables and topology in hot QCD with two families of quarks, Phys. Rev. D 98 (2018) 094501 [arXiv:1805.06001] [INSPIRE].

  17. F.C. Hansen and H. Leutwyler, Charge correlations and topological susceptibility in QCD, Nucl. Phys. B 350 (1991) 201 [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Gómez Nicola and J. Ruiz de Elvira, Pseudoscalar susceptibilities and quark condensates: chiral restoration and lattice screening masses, JHEP 03 (2016) 186 [arXiv:1602.01476] [INSPIRE].

    Article  ADS  Google Scholar 

  19. V. Azcoiti, Topology in the SU(N F) chiral symmetry restored phase of unquenched QCD and axion cosmology, Phys. Rev. D 94 (2016) 094505 [arXiv:1609.01230] [INSPIRE].

  20. A. Gómez Nicola and J. Ruiz De Elvira, Chiral and U (1)A restoration for the scalar and pseudoscalar meson nonets, Phys. Rev. D 98 (2018) 014020 [arXiv:1803.08517] [INSPIRE].

  21. M.I. Buchoff et al., QCD chiral transition, U(1)A symmetry and the Dirac spectrum using domain wall fermions, Phys. Rev. D 89 (2014) 054514 [arXiv:1309.4149] [INSPIRE].

  22. T. Bhattacharya et al., QCD phase transition with chiral quarks and physical quark masses, Phys. Rev. Lett. 113 (2014) 082001 [arXiv:1402.5175] [INSPIRE].

  23. A. Gomez Nicola and J. Ruiz de Elvira, Patterns and partners for chiral symmetry restoration, Phys. Rev. D 97 (2018) 074016 [arXiv:1704.05036] [INSPIRE].

  24. TWQCD collaboration, Topological susceptibility to the one-loop order in chiral perturbation theory, Phys. Rev. D 80 (2009) 034502 [arXiv:0903.2146] [INSPIRE].

  25. G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].

    Article  Google Scholar 

  26. M. Gorghetto and G. Villadoro, Topological susceptibility and QCD axion mass: QED and NNLO corrections, JHEP 03 (2019) 033 [arXiv:1812.01008] [INSPIRE].

    Article  ADS  Google Scholar 

  27. R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  28. S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Spalinski, Chiral corrections to the axion mass, Z. Phys. C 41 (1988) 87 [INSPIRE].

    Google Scholar 

  30. V. Bernard, S. Descotes-Genon and G. Toucas, Determining the chiral condensate from the distribution of the winding number beyond topological susceptibility, JHEP 12 (2012) 080 [arXiv:1209.4367] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. F.-K. Guo and U.-G. Meißner, Cumulants of the QCD topological charge distribution, Phys. Lett. B 749 (2015) 278 [arXiv:1506.05487] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  32. E. Vicari and H. Panagopoulos, Theta dependence of SU(N) gauge theories in the presence of a topological term, Phys. Rept. 470 (2009) 93 [arXiv:0803.1593] [INSPIRE].

    Article  ADS  Google Scholar 

  33. H. Panagopoulos and E. Vicari, The 4D SU(3) gauge theory with an imaginary θ term, JHEP 11 (2011) 119 [arXiv:1109.6815] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. C. Bonati, M. D’Elia, P. Rossi and E. Vicari, θ dependence of 4D SU(N) gauge theories in the large-N limit, Phys. Rev. D 94 (2016) 085017 [arXiv:1607.06360] [INSPIRE].

  35. T. Vonk, F.-K. Guo and U.-G. Meißner, Aspects of the QCD θ-vacuum, JHEP 06 (2019) 106 [Erratum ibid. 10 (2019) 028] [arXiv:1905.06141] [INSPIRE].

  36. HotQCD collaboration, The chiral transition and U (1)A symmetry restoration from lattice QCD using Domain Wall Fermions, Phys. Rev. D 86 (2012) 094503 [arXiv:1205.3535] [INSPIRE].

  37. C. Bonati, M. D’Elia, H. Panagopoulos and E. Vicari, Change of θ dependence in 4D SU(N) gauge theories across the deconfinement transition, Phys. Rev. Lett. 110 (2013) 252003 [arXiv:1301.7640] [INSPIRE].

    Article  ADS  Google Scholar 

  38. P. Herrera-Siklody, J.I. Latorre, P. Pascual and J. Taron, Chiral effective Lagrangian in the large Nc limit: the nonet case, Nucl. Phys. B 497 (1997) 345 [hep-ph/9610549] [INSPIRE].

  39. R. Kaiser and H. Leutwyler, Large Nc in chiral perturbation theory, Eur. Phys. J. C 17 (2000) 623 [hep-ph/0007101] [INSPIRE].

  40. A. Gomez Nicola and R. Torres Andres, Isospin-breaking quark condensates in chiral perturbation theory, J. Phys. G 39 (2012) 015004 [arXiv:1009.2170] [INSPIRE].

  41. R. Escribano, F.S. Ling and M.H.G. Tytgat, Large Nc, chiral approach to M (η′) at finite temperature, Phys. Rev. D 62 (2000) 056004 [hep-ph/0003052] [INSPIRE].

  42. X.-W. Gu, C.-G. Duan and Z.-H. Guo, Updated study of the η- η′ mixing and the thermal properties of light pseudoscalar mesons at low temperatures, Phys. Rev. D 98 (2018) 034007 [arXiv:1803.07284] [INSPIRE].

  43. M. Ishii, H. Kouno and M. Yahiro, Model prediction for temperature dependence of meson pole masses from lattice QCD results on meson screening masses, Phys. Rev. D 95 (2017) 114022 [arXiv:1609.04575] [INSPIRE].

    ADS  Google Scholar 

  44. A.Yu. Kotov, M.P. Lombardo and A.M. Trunin, Fate of the η′ in the quark gluon plasma, Phys. Lett. B 794 (2019) 83 [arXiv:1903.05633] [INSPIRE].

    Article  ADS  Google Scholar 

  45. C. Rosenzweig, J. Schechter and C.G. Trahern, Is the effective Lagrangian for QCD a σ-model?, Phys. Rev. D 21 (1980) 3388 [INSPIRE].

    ADS  Google Scholar 

  46. Z.-H. Guo, J.A. Oller and J. Ruiz de Elvira, Chiral dynamics in U(3) unitary chiral perturbation theory, Phys. Lett. B 712 (2012) 407 [arXiv:1203.4381] [INSPIRE].

    ADS  Google Scholar 

  47. Z.-H. Guo, J.A. Oller and J. Ruiz de Elvira, Chiral dynamics in form factors, spectral-function sum rules, meson-meson scattering and semi-local duality, Phys. Rev. D 86 (2012) 054006 [arXiv:1206.4163] [INSPIRE].

  48. X.-K. Guo, Z.-H. Guo, J.A. Oller and J.J. Sanz-Cillero, Scrutinizing the η- η′ mixing, masses and pseudoscalar decay constants in the framework of U(3) chiral effective field theory, JHEP 06 (2015) 175 [arXiv:1503.02248] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Gomez Nicola, J.R. Pelaez and J. Ruiz de Elvira, Non-factorization of four-quark condensates at low energies within chiral perturbation theory, Phys. Rev. D 82 (2010) 074012 [arXiv:1005.4370] [INSPIRE].

  50. A. Gomez Nicola, J.R. Pelaez and J. Ruiz de Elvira, Scalar susceptibilities and four-quark condensates in the meson gas within Chiral Perturbation Theory, Phys. Rev. D 87 (2013) 016001 [arXiv:1210.7977] [INSPIRE].

  51. H. Leutwyler, Implications of η- η′ mixing for the decay η → 3π, Phys. Lett. B 374 (1996) 181 [hep-ph/9601236] [INSPIRE].

  52. Flavour Lattice Averaging Group collaboration, FLAG review 2019, arXiv:1902.08191 [INSPIRE].

  53. F. Karsch, K. Redlich and A. Tawfik, Hadron resonance mass spectrum and lattice QCD thermodynamics, Eur. Phys. J. C 29 (2003) 549 [hep-ph/0303108] [INSPIRE].

  54. A. Tawfik and D. Toublan, Quark-antiquark condensates in the hadronic phase, Phys. Lett. B 623 (2005) 48 [hep-ph/0505152] [INSPIRE].

  55. P. Huovinen and P. Petreczky, QCD equation of state and hadron resonance gas, Nucl. Phys. A 837 (2010) 26 [arXiv:0912.2541] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Jankowski, D. Blaschke and M. Spalinski, Chiral condensate in hadronic matter, Phys. Rev. D 87 (2013) 105018 [arXiv:1212.5521] [INSPIRE].

    ADS  Google Scholar 

  57. A. Gomez Nicola, J. Ruiz de Elvira and R. Torres Andres, Chiral symmetry restoration and scalar-pseudoscalar partners in QCD, Phys. Rev. D 88 (2013) 076007 [arXiv:1304.3356] [INSPIRE].

  58. E.V. Shuryak, Which chiral symmetry is restored in hot QCD?, Comments Nucl. Part. Phys. 21 (1994) 235 [hep-ph/9310253] [INSPIRE].

  59. T.D. Cohen, The high temperature phase of QCD and U(1)A symmetry, Phys. Rev. D 54 (1996) R1867 [hep-ph/9601216] [INSPIRE].

  60. S.H. Lee and T. Hatsuda, U(1)A symmetry restoration in QCD with N (f) flavors, Phys. Rev. D 54 (1996) R1871 [hep-ph/9601373] [INSPIRE].

  61. E. Meggiolaro and A. Morda, Remarks on the U (1) axial symmetry and the chiral transition in QCD at finite temperature, Phys. Rev. D 88 (2013) 096010 [arXiv:1309.4598] [INSPIRE].

  62. S. Aoki, H. Fukaya and Y. Taniguchi, Chiral symmetry restoration, eigenvalue density of Dirac operator and axial U(1) anomaly at finite temperature, Phys. Rev. D 86 (2012) 114512 [arXiv:1209.2061] [INSPIRE].

    ADS  Google Scholar 

  63. G. Cossu et al., Finite temperature study of the axial U(1) symmetry on the lattice with overlap fermion formulation, Phys. Rev. D 87 (2013) 114514 [Erratum ibid. D 88 (2013) 019901] [arXiv:1304.6145] [INSPIRE].

  64. V. Dick et al., Microscopic origin of UA (1) symmetry violation in the high temperature phase of QCD, Phys. Rev. D 91 (2015) 094504 [arXiv:1502.06190] [INSPIRE].

  65. A. Tomiya et al., Evidence of effective axial U(1) symmetry restoration at high temperature QCD, Phys. Rev. D 96 (2017) 034509 [arXiv:1612.01908] [INSPIRE].

  66. B.B. Brandt et al., On the strength of the U(1)A anomaly at the chiral phase transition in Nf = 2 QCD, JHEP 12 (2016) 158 [arXiv:1608.06882] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departamento de Física Teórica and IPARCOS, Universidad Complutense, 28040, Madrid, Spain

    A. Gómez Nicola & A. Vioque-Rodríguez

  2. Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012, Bern, Switzerland

    J. Ruiz de Elvira

Authors
  1. A. Gómez Nicola
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. J. Ruiz de Elvira
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. A. Vioque-Rodríguez
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Gómez Nicola.

Additional information

ArXiv ePrint: 1907.11734

Electronic supplementary material

ESM 1

(PDF 1628 kb)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nicola, A.G., de Elvira, J.R. & Vioque-Rodríguez, A. The QCD topological charge and its thermal dependence: the role of the η′. J. High Energ. Phys. 2019, 86 (2019). https://doi.org/10.1007/JHEP11(2019)086

Download citation

  • Received: 31 July 2019

  • Revised: 10 October 2019

  • Accepted: 31 October 2019

  • Published: 14 November 2019

  • DOI: https://doi.org/10.1007/JHEP11(2019)086

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Chiral Lagrangians
  • 1/N Expansion
  • Anomalies in Field and String Theories
  • Phase Diagram of QCD
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.