Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Benchmarking simplified template cross sections in W H production

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 06 November 2019
  • volume 2019, Article number: 34 (2019)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Benchmarking simplified template cross sections in W H production
Download PDF
  • Johann Brehmer1,
  • Sally Dawson2,
  • Samuel Homiller  ORCID: orcid.org/0000-0002-0063-68562,3,
  • Felix Kling4,5 &
  • …
  • Tilman Plehn6 
  • 347 Accesses

  • 19 Citations

  • 2 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

Simplified template cross sections define a framework for the measurement and dissemination of kinematic information in Higgs measurements. We benchmark the currently proposed setup in an analysis of dimension-6 effective field theory operators for W H production. Calculating the Fisher information allows us to quantify the sensitivity of this framework to new physics and study its dependence on phase space. New machine- learning techniques let us compare the simplified template cross section framework to the full, high-dimensional kinematic information. We show that the way in which we truncate the effective theory has a sizable impact on the definition of the optimal simplified template cross sections.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S. Dawson, C. Englert and T. Plehn, Higgs physics: it ain’t over till it’s over, Phys. Rept. 816 (2019) 1 [arXiv:1808.01324] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. I. Brivio and M. Trott, The standard model as an effective field theory, Phys. Rept. 793 (2019) 1 [arXiv:1706.08945] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Butter et al., The Gauge-Higgs Legacy of the LHC Run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].

    Article  ADS  Google Scholar 

  4. I. Brivio, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia and L. Merlo, The complete HEFT Lagrangian after the LHC Run I, Eur. Phys. J. C 76 (2016) 416 [arXiv:1604.06801] [INSPIRE].

    Article  ADS  Google Scholar 

  5. S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, Higher dimensional operators and the LHC Higgs data: The role of modified kinematics, Phys. Rev. D 89 (2014) 053010 [arXiv:1308.4860] [INSPIRE].

  6. S. Di Vita et al., A global view on the Higgs self-coupling at lepton colliders, JHEP 02 (2018) 178 [arXiv:1711.03978] [INSPIRE].

    Article  ADS  Google Scholar 

  7. J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated global SMEFT fit to Higgs, diboson and electroweak data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].

    Article  ADS  Google Scholar 

  8. E. da Silva Almeida et al., Electroweak sector under scrutiny: a combined analysis of LHC and electroweak precision data, Phys. Rev. D 99 (2019) 033001 [arXiv:1812.01009] [INSPIRE].

  9. A. Biekötter, T. Corbett and T. Plehn, The gauge-Higgs legacy of the LHC Run II, SciPost Phys. 6 (2019) 064 [arXiv:1812.07587] [INSPIRE].

  10. ATLAS collaboration, Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods, ATL-PHYS-PUB-2019-029 (2019).

  11. CMS collaboration, Simplified likelihood for the re-interpretation of public CMS results, CMS-NOTE-2017-001 (2017).

  12. K. Cranmer, S. Kreiss, D. Lopez-Val and T. Plehn, Decoupling theoretical uncertainties from measurements of the Higgs boson, Phys. Rev. D 91 (2015) 054032 [arXiv:1401.0080] [INSPIRE].

  13. E. Maguire, L. Heinrich and G. Watt, HEPData: a repository for high energy physics data, J. Phys. Conf. Ser. 898 (2017) 102006 [arXiv:1704.05473] [INSPIRE].

    Article  Google Scholar 

  14. C.N. Leung, S.T. Love and S. Rao, Low-energy manifestations of a new interaction scale: operator analysis, Z. Phys. C 31 (1986) 433 [INSPIRE].

    ADS  Google Scholar 

  15. W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

  16. M.C. Gonzalez-Garcia, Anomalous Higgs couplings, Int. J. Mod. Phys. A 14 (1999) 3121 [hep-ph/9902321] [INSPIRE].

  17. C. Grojean, M. Montull and M. Riembau, Diboson at the LHC vs LEP, JHEP 03 (2019) 020 [arXiv:1810.05149] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. de Blas et al., Electroweak precision constraints at present and future colliders PoS(ICHEP2016)690 [arXiv:1611.05354] [INSPIRE].

  19. F. Tackmann et al., Simplified template cross sections, LHCHXSWG-DRAFT-INT-2016-006 (2016).

  20. N. Berger et al., Simplified template cross sections — Stage 1.1, arXiv:1906.02754 [INSPIRE].

  21. J. Brehmer, K. Cranmer, F. Kling and T. Plehn, Better Higgs boson measurements through information geometry, Phys. Rev. D 95 (2017) 073002 [arXiv:1612.05261] [INSPIRE].

  22. J. Brehmer, F. Kling, T. Plehn and T.M.P. Tait, Better Higgs-CP tests through information geometry, Phys. Rev. D 97 (2018) 095017 [arXiv:1712.02350] [INSPIRE].

  23. J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, A guide to constraining effective field theories with machine learning, Phys. Rev. D 98 (2018) 052004 [arXiv:1805.00020] [INSPIRE].

  24. J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, Constraining effective field theories with machine learning, Phys. Rev. Lett. 121 (2018) 111801 [arXiv:1805.00013] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Brehmer, G. Louppe, J. Pavez and K. Cranmer, Mining gold from implicit models to improve likelihood-free inference, arXiv:1805.12244 [INSPIRE].

  26. J. Brehmer, F. Kling, I. Espejo and K. Cranmer, MadMiner: machine learning-based inference for particle physics, arXiv:1907.10621 [INSPIRE].

  27. F.F. Freitas, C.K. Khosa and V. Sanz, Exploring the standard model EFT in VH production with machine learning, Phys. Rev. D 100 (2019) 035040 [arXiv:1902.05803] [INSPIRE].

  28. T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

  29. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  Google Scholar 

  30. I. Brivio and M. Trott, Scheming in the SMEFT … and a reparameterization invariance!, JHEP 07 (2017) 148 [arXiv:1701.06424] [INSPIRE].

    Article  ADS  Google Scholar 

  31. L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W ± data in a global fit of SMEFT parameters to lift flat directions, JHEP 09 (2016) 157 [arXiv:1606.06693] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Haller et al., Update of the global electroweak fit and constraints on two-Higgs-doublet models, Eur. Phys. J. C 78 (2018) 675 [arXiv:1803.01853] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Dedes et al., Feynman rules for the standard model effective field theory in Rξ -gauges, JHEP 06 (2017) 143 [arXiv:1704.03888] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Nakamura, Polarisations of the Z and W bosons in the processes pp → Z H and pp → W ± H , JHEP 08 (2017) 008 [arXiv:1706.01816] [INSPIRE].

    Article  ADS  Google Scholar 

  35. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].

  37. V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10 (2015) 146 [arXiv:1507.00020] [INSPIRE].

    Article  ADS  Google Scholar 

  38. I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12 (2017) 070 [arXiv:1709.06492] [INSPIRE].

    Article  ADS  Google Scholar 

  39. ATLAS collaboration, Observation of H → b\( \overline{b} \) decays and V H production with the ATLAS detector, Phys. Lett. B 786 (2018) 59 [arXiv:1808.08238] [INSPIRE].

  40. CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].

  41. ATLAS collaboration, Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 78 (2018) 903 [arXiv:1802.08168] [INSPIRE].

  42. K. Cranmer and T. Plehn, Maximum significance at the LHC and Higgs decays to muons, Eur. Phys. J. C 51 (2007) 415 [hep-ph/0605268] [INSPIRE].

  43. D. Atwood and A. Soni, Analysis for magnetic moment and electric dipole moment form-factors of the top quark via e+ e− → t\( \overline{t} \), Phys. Rev. D 45 (1992) 2405 [INSPIRE].

    ADS  Google Scholar 

  44. M. Davier, L. Duflot, F. Le Diberder and A. Rouge, The optimal method for the measurement of tau polarization, Phys. Lett. B 306 (1993) 411 [INSPIRE].

    Article  ADS  Google Scholar 

  45. M. Diehl and O. Nachtmann, Optimal observables for the measurement of three gauge boson couplings in e+ e− → W + W − , Z. Phys. C 62 (1994) 397 [INSPIRE].

    ADS  Google Scholar 

  46. K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models, J. Phys. Soc. Jap. 57 (1988) 4126 [INSPIRE].

  47. R.A. Fisher, The detection of linkage with “dominant” abnormalities, Ann. Eugenics 6 (1935) 187.

    Article  Google Scholar 

  48. J. Brehmer, et al., Effective LHC measurements with matrix elements and machine learning, in the proceedings of the 19th International Workshop on Advanced Computing and Analysis Techniques in Physics Research: Empowering the revolution: Bringing Machine Learning to High Performance Computing (ACAT 2019), March 11–15, Saas-Fee, Switzerland (2019), arXiv:1906.01578 [INSPIRE].

  49. D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, arXiv:1412.6980 [INSPIRE].

  50. S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Annals Math. Statist. 9 (1938) 60.

    Article  Google Scholar 

  51. A. Wald, Tests of statistical hypotheses concerning several parameters when the number of observations is large, Trans. Amer. Math. Soc. 54 (1943) 426.

    Article  MathSciNet  Google Scholar 

  52. G. Panico, F. Riva and A. Wulzer, Diboson Interference Resurrection, Phys. Lett. B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Stoye et al., Likelihood-free inference with an improved cross-entropy estimator, arXiv:1808.00973 [INSPIRE].

  54. I. Brivio et al., Another fit of the dimension-6 top sector, in preparation (2019).

  55. A. Biekötter, J. Brehmer and T. Plehn, Extending the limits of Higgs effective theory, Phys. Rev. D 94 (2016) 055032 [arXiv:1602.05202] [INSPIRE].

  56. T. Plehn, P. Schichtel and D. Wiegand, Where boosted significances come from, Phys. Rev. D 89 (2014) 054002 [arXiv:1311.2591] [INSPIRE].

  57. ATLAS collaboration, Measurement of V H, H → b\( \overline{b} \) production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector, JHEP 05 (2019) 141 [arXiv:1903.04618] [INSPIRE].

  58. F. Kling, T. Plehn and P. Schichtel, Maximizing the significance in Higgs boson pair analyses, Phys. Rev. D 95 (2017) 035026 [arXiv:1607.07441] [INSPIRE].

  59. S. Baerjee et al., Probing electroweak precision physics via boosted Higgs-strahlung at the LHC, Phys. Rev. D98 (2018) 095012 [arXiv:1807.01796].

  60. R. Franceschini et al., Electroweak precision tests in high-energy diboson processes, JHEP 02 (2018) 111 [arXiv:1712.01310] [INSPIRE].

    Article  ADS  Google Scholar 

  61. DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  62. T. Kluyver et al., Jupyter notebooks — A publishing format for reproducible computational workflows, talk given at the International Conference on Electronic Publishing (ELPUB), June 7–9, Göttingen, Germany (2016).

  63. J. Brehmer, F. Kling, I. Espejo and K. Cranmer, MadMiner: an inference toolkit for particle physics., on Zenodo.

  64. J.D. Hunter, Matplotlib: a 2d graphics environment, Comput. Sci. Engineer. 9 (2007) 90.

    Article  ADS  Google Scholar 

  65. T. Oliphant, NumPy: a guide to NumPy, Trelgol Publishing, U.S.A. (2006).

    Google Scholar 

  66. Lukas, lukasheinrich/pylhe v0.0.4, on Zenodo.

  67. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  68. G. Van Rossum and F.L. Drake Jr., Python tutorial, Centrum voor Wiskunde en Informatica, Amsterdam The Netherlands (1995).

  69. A. Paszke et al., Automatic differentiation in pytorch, talk given at the Conference on Neural Information Processing Systems (NIPS-W), December 4–9, Long Beach, U.S.A. (2017).

  70. E. Rodrigues, The Scikit-HEP project, EPJ Web Conf. 214 (2019) 06005 [arXiv:1905.00002] [INSPIRE].

  71. F. Pedregosa et al., Scikit-learn: machine learning in Python, J. Machine Learn. Res. 12 (2011) 2825.

    MathSciNet  MATH  Google Scholar 

  72. J. Pivarski et al., scikit-hep/uproot: 3.7.2, on Zenodo.

  73. CMS collaboration, Observation of Higgs boson decay to bottom quarks, Phys. Rev. Lett. 121 (2018) 121801 [arXiv:1808.08242] [INSPIRE].

  74. O. Mattelaer, On the maximal use of Monte Carlo samples: re-weighting events at NLO accuracy, Eur. Phys. J. C 76 (2016) 674 [arXiv:1607.00763] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Center for Cosmology and Particle Physics, Center for Data Science, New York University, New York, U.S.A.

    Johann Brehmer

  2. Department of Physics, Brookhaven National Laboratory, Upton, NY, 11973, U.S.A.

    Sally Dawson & Samuel Homiller

  3. C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY, 11790, U.S.A.

    Samuel Homiller

  4. Department of Physics and Astronomy, University of California, Irvine, U.S.A.

    Felix Kling

  5. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, U.S.A.

    Felix Kling

  6. Institut für Theoretische Physik, Universität Heidelberg, Hidelberg, Germany

    Tilman Plehn

Authors
  1. Johann Brehmer
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Sally Dawson
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Samuel Homiller
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Felix Kling
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Tilman Plehn
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Samuel Homiller.

Additional information

ArXiv ePrint: 1908.06980

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brehmer, J., Dawson, S., Homiller, S. et al. Benchmarking simplified template cross sections in W H production. J. High Energ. Phys. 2019, 34 (2019). https://doi.org/10.1007/JHEP11(2019)034

Download citation

  • Received: 26 August 2019

  • Revised: 09 October 2019

  • Accepted: 27 October 2019

  • Published: 06 November 2019

  • DOI: https://doi.org/10.1007/JHEP11(2019)034

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higgs Physics
  • Beyond Standard Model
  • Effective Field Theories
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature