Moments of Ioffe time parton distribution functions from non-local matrix elements

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


We examine the relation of moments of parton distribution functions to matrix elements of non-local operators computed in lattice quantum chromodynamics. We argue that after the continuum limit is taken, these non-local matrix elements give access to moments that are finite and can be matched to those defined in the \( \overline{MS} \) scheme. We demonstrate this fact with a numerical computation of moments through non-local matrix elements in the quenched approximation and we find that these moments are in agreement with the moments obtained from direct computations of local twist-2 matrix elements in the quenched approximation.

A preprint version of the article is available at ArXiv.


  1. [1]

    X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002 [arXiv:1305.1539] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    C. Alexandrou et al., Lattice calculation of parton distributions, Phys. Rev. D 92 (2015) 014502 [arXiv:1504.07455] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen, A. Scapellato and F. Steffens, Light-Cone Parton Distribution Functions from Lattice QCD, Phys. Rev. Lett. 121 (2018) 112001 [arXiv:1803.02685] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    H.-W. Lin, J.-W. Chen, S.D. Cohen and X. Ji, Flavor Structure of the Nucleon Sea from Lattice QCD, Phys. Rev. D 91 (2015) 054510 [arXiv:1402.1462] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    J.-W. Chen et al., Parton distribution function with nonperturbative renormalization from lattice QCD, Phys. Rev. D 97 (2018) 014505 [arXiv:1706.01295] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    W. Broniowski and E. Ruiz Arriola, Partonic quasidistributions of the proton and pion from transverse-momentum distributions, Phys. Rev. D 97 (2018) 034031 [arXiv:1711.03377] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    Y.-Q. Ma and J.-W. Qiu, Exploring Partonic Structure of Hadrons Using ab initio Lattice QCD Calculations, Phys. Rev. Lett. 120 (2018) 022003 [arXiv:1709.03018] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A.J. Chambers et al., Nucleon Structure Functions from Operator Product Expansion on the Lattice, Phys. Rev. Lett. 118 (2017) 242001 [arXiv:1703.01153] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    K.-F. Liu and S.-J. Dong, Origin of difference between \( \overline{d} \) and ū partons in the nucleon, Phys. Rev. Lett. 72 (1994) 1790 [hep-ph/9306299] [INSPIRE].

  10. [10]

    G.S. Bali et al., Pion distribution amplitude from Euclidean correlation functions: Exploring universality and higher twist effects, arXiv:1807.06671 [INSPIRE].

  11. [11]

    H.-W. Lin et al., Parton distributions and lattice QCD calculations: a community white paper, Prog. Part. Nucl. Phys. 100 (2018) 107 [arXiv:1711.07916] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    G.C. Rossi and M. Testa, Note on lattice regularization and equal-time correlators for parton distribution functions, Phys. Rev. D 96 (2017) 014507 [arXiv:1706.04428] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. [13]

    G. Rossi and M. Testa, Euclidean versus Minkowski short distance, Phys. Rev. D 98 (2018) 054028 [arXiv:1806.00808] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    X. Ji, J.-H. Zhang and Y. Zhao, More On Large-Momentum Effective Theory Approach to Parton Physics, Nucl. Phys. B 924 (2017) 366 [arXiv:1706.07416] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  15. [15]

    A.V. Radyushkin, Quasi-parton distribution functions, momentum distributions and pseudo-parton distribution functions, Phys. Rev. D 96 (2017) 034025 [arXiv:1705.01488] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    K. Orginos, A. Radyushkin, J. Karpie and S. Zafeiropoulos, Lattice QCD exploration of parton pseudo-distribution functions, Phys. Rev. D 96 (2017) 094503 [arXiv:1706.05373] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    C. Dawson et al., New lattice approaches to the delta I = 1/2 rule, Nucl. Phys. B 514 (1998) 313 [hep-lat/9707009] [INSPIRE].

  18. [18]

    S.A. Anikin and O.I. Zavyalov, Short Distance and Light Cone Expansions for Products of Currents, Annals Phys. 116 (1978) 135 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    A.V. Radyushkin, Quark pseudodistributions at short distances, Phys. Lett. B 781 (2018) 433 [arXiv:1710.08813] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    A. Radyushkin, One-loop evolution of parton pseudo-distribution functions on the lattice, Phys. Rev. D 98 (2018) 014019 [arXiv:1801.02427] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    B.L. Ioffe, Space-time picture of photon and neutrino scattering and electroproduction cross-section asymptotics, Phys. Lett. B 30 (1969) 123 [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    V. Braun, P. Gornicki and L. Mankiewicz, Ioffe - time distributions instead of parton momentum distributions in description of deep inelastic scattering, Phys. Rev. D 51 (1995) 6036 [hep-ph/9410318] [INSPIRE].

  23. [23]

    R.A. Briceño, M.T. Hansen and C.J. Monahan, Role of the Euclidean signature in lattice calculations of quasidistributions and other nonlocal matrix elements, Phys. Rev. D 96 (2017) 014502 [arXiv:1703.06072] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. [24]

    T. Ishikawa, Y.-Q. Ma, J.-W. Qiu and S. Yoshida, Practical quasi parton distribution functions, arXiv:1609.02018 [INSPIRE].

  25. [25]

    J.-H. Zhang, J.-W. Chen and C. Monahan, Parton distribution functions from reduced Ioffe-time distributions, Phys. Rev. D 97 (2018) 074508 [arXiv:1801.03023] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    J. Karpie, K. Orginos, A. Radyushkin and S. Zafeiropoulos, Parton distribution functions on the lattice and in the continuum, EPJ Web Conf. 175 (2018) 06032 [arXiv:1710.08288] [INSPIRE].

    Article  Google Scholar 

  27. [27]

    G. Martinelli, C. Pittori, C.T. Sachrajda, M. Testa and A. Vladikas, A general method for nonperturbative renormalization of lattice operators, Nucl. Phys. B 445 (1995) 81 [hep-lat/9411010] [INSPIRE].

  28. [28]

    M. Guagnelli, K. Jansen and R. Petronzio, Renormalization group invariant average momentum of nonsinglet parton densities, Phys. Lett. B 459 (1999) 594 [hep-lat/9903012] [INSPIRE].

  29. [29]

    C. Alexandrou et al., A complete non-perturbative renormalization prescription for quasi-PDFs, Nucl. Phys. B 923 (2017) 394 [arXiv:1706.00265] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  30. [30]

    G. Martinelli and C.T. Sachrajda, On the difficulty of computing higher twist corrections, Nucl. Phys. B 478 (1996) 660 [hep-ph/9605336] [INSPIRE].

  31. [31]

    T. Izubuchi, X. Ji, L. Jin, I.W. Stewart and Y. Zhao, Factorization Theorem Relating Euclidean and Light-Cone Parton Distributions, Phys. Rev. D 98 (2018) 056004 [arXiv:1801.03917] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    M. Göckeler et al., Polarized and unpolarized nucleon structure functions from lattice QCD, Phys. Rev. D 53 (1996) 2317 [hep-lat/9508004] [INSPIRE].

  33. [33]

    M. Göckeler et al., Perturbative and Nonperturbative Renormalization in Lattice QCD, Phys. Rev. D 82 (2010) 114511 [Erratum ibid. D 86 (2012) 099903] [arXiv:1003.5756] [INSPIRE].

  34. [34]

    A.V. Radyushkin, Structure of parton quasi-distributions and their moments, arXiv:1807.07509 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Savvas Zafeiropoulos.

Additional information

ArXiv ePrint: 1807.10933

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karpie, J., Orginos, K. & Zafeiropoulos, S. Moments of Ioffe time parton distribution functions from non-local matrix elements. J. High Energ. Phys. 2018, 178 (2018).

Download citation


  • Lattice QCD
  • Lattice Quantum Field Theory