Bootstrapping the minimal 3D SCFT

Abstract

We study the conformal bootstrap constraints for 3D conformal field theories with a 2 or parity symmetry, assuming a single relevant scalar operator ϵ that is invariant under the symmetry. When there is additionally a single relevant odd scalar σ, we map out the allowed space of dimensions and three-point couplings of such “Ising-like” CFTs. If we allow a second relevant odd scalar σ′, we identify a feature in the allowed space compatible with 3D \( \mathcal{N} \) = 1 superconformal symmetry and conjecture that it corresponds to the minimal \( \mathcal{N} \) = 1 supersymmetric extension of the Ising CFT. This model has appeared in previous numerical bootstrap studies, as well as in proposals for emergent supersymmetry on the boundaries of topological phases of matter. Adding further constraints from 3D \( \mathcal{N} \) =1 superconformal symmetry, we isolate this theory and use the numerical bootstrap to compute the leading scaling dimensions Δσ = Δϵ − 1 = .58444(22) and three-point couplings λσσϵ = 1.0721(2) and λϵϵϵ = 1.67(1). We additionally place bounds on the central charge and use the extremal functional method to estimate the dimensions of the next several operators in the spectrum. Based on our results we observe the possible exact relation λϵϵϵ/λσσϵ = tan(1).

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  3. [3]

    S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].

  4. [4]

    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  5. [5]

    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago, JHEP 11 (2015) 106 [arXiv:1504.07997] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Precision Islands in the Ising and O(N) models, JHEP 08 (2016) 036 [arXiv:1603.04436] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. [7]

    D. Poland andD. Simmons-Duffin, The conformal bootstrap, Nature Phys. 12 (2016) 535.

  8. [8]

    D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques and applications, arXiv:1805.04405 [INSPIRE].

  9. [9]

    L. Iliesiu et al., Bootstrapping 3D fermions, JHEP 03 (2016) 120 [arXiv:1508.00012] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    L. Iliesiu et al., Bootstrapping 3D fermions with global symmetries, JHEP 01 (2018) 036 [arXiv:1705.03484] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    T. Grover, D.N. Sheng and A. Vishwanath, Emergent space-time supersymmetry at the boundary of a topological phase, Science 344 (2014) 280 [arXiv:1301.7449] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, Yukawa CFTs and emergent supersymmetry, PTEP 2016 (2016) 12C105 [arXiv:1607.05316] [INSPIRE].

  13. [13]

    N. Zerf et al., Four-loop critical exponents for the Gross-Neveu-Yukawa models, Phys. Rev. D 96 (2017) 096010 [arXiv:1709.05057] [INSPIRE].

    Google Scholar 

  14. [14]

    B. Ihrig, L.N. Mihaila and M.M. Scherer, Critical behavior of Dirac fermions from perturbative renormalization, Phys. Rev. B 98 (2018) 125109 [arXiv:1806.04977] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    J.-H. Park, Superconformal symmetry in three-dimensions, J. Math. Phys. 41 (2000) 7129 [hep-th/9910199] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    J. Rong and N. Su, Bootstrapping minimal \( \mathcal{N} \) = 1 superconformal field theory in three dimensions, arXiv:1807.04434 [INSPIRE].

  17. [17]

    D. Simmons-Duffin, A semidefinite program solver for the conformal bootstrap, JHEP 06 (2015) 174 [arXiv:1502.02033] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    T. Ohtsuki, CBoot: a Sage module to create (convolved) conformal block table, https://github.com/tohtsky/cboot.

  19. [19]

    D. Bashkirov, Bootstrapping the \( \mathcal{N} \) = 1 SCFT in three dimensions, arXiv:1310.8255 [INSPIRE].

  20. [20]

    Z. Li and N. Su, 3D CFT archipelago from single correlator bootstrap, arXiv:1706.06960 [INSPIRE].

  21. [21]

    D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    S. El-Showk and M.F. Paulos, Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    L. Iliesiu et al., Fermion-scalar conformal blocks, JHEP 04 (2016) 074 [arXiv:1511.01497] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  24. [24]

    A. Dymarsky et al., The 3d stress-tensor bootstrap, JHEP 02 (2018) 164 [arXiv:1708.05718] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  25. [25]

    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP 11 (2015) 101 [arXiv:1502.07707] [INSPIRE].

    ADS  MATH  Google Scholar 

  28. [28]

    L.F. Alday and A. Zhiboedov, Conformal bootstrap with slightly broken higher spin symmetry, JHEP 06 (2016) 091 [arXiv:1506.04659] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    L.F. Alday and A. Zhiboedov, An algebraic approach to the analytic bootstrap, JHEP 04 (2017) 157 [arXiv:1510.08091] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    L.F. Alday, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett. 119 (2017) 111601 [arXiv:1611.01500] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    D. Simmons-Duffin, The lightcone bootstrap and the spectrum of the 3d Ising CFT, JHEP 03 (2017) 086 [arXiv:1612.08471] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    S. Caron-Huot, Analyticity in spin in conformal theories, JHEP 09 (2017) 078 [arXiv:1703.00278] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    D. Simmons-Duffin, D. Stanford and E. Witten, A spacetime derivation of the Lorentzian OPE inversion formula, JHEP 07 (2018) 085 [arXiv:1711.03816] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  34. [34]

    S. El-Showk et al., Conformal field theories in fractional dimensions, Phys. Rev. Lett. 112 (2014) 141601 [arXiv:1309.5089] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    A.A. Nizami, T. Sharma and V. Umesh, Superspace formulation and correlation functions of 3d superconformal field theories, JHEP 07 (2014) 022 [arXiv:1308.4778] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    E.I. Buchbinder, S.M. Kuzenko and I.B. Samsonov, Superconformal field theory in three dimensions: correlation functions of conserved currents, JHEP 06 (2015) 138 [arXiv:1503.04961] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    A. Atanasov, A. Hillman and D. Poland, https://github.com/ABAtanasov/IsingBootstrap/.

  38. [38]

    D. Simmons-Duffin, https://gitlab.com/bootstrapcollaboration/spectrum-extraction.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Poland.

Additional information

ArXiv ePrint: 1807.05702

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atanasov, A., Hillman, A. & Poland, D. Bootstrapping the minimal 3D SCFT. J. High Energ. Phys. 2018, 140 (2018). https://doi.org/10.1007/JHEP11(2018)140

Download citation

Keywords

  • Conformal and W Symmetry
  • Conformal Field Theory
  • Nonperturbative Effects
  • Supersymmetry and Duality