Skip to main content

Nonrelativistic string theory and T-duality

A preprint version of the article is available at arXiv.


Nonrelativistic string theory in flat spacetime is described by a two-dimensional quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields. Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrelativistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian geometry. This defines the sigma model of nonrelativistic string theory describing strings propagating and interacting in curved background fields. We also implement T-duality transformations in the path integral of this sigma model and uncover the spacetime interpretation of T-duality. We show that T-duality along the longitudinal direction of the string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geometry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite boost limit. This relation provides a first principles definition of string theory in the discrete light cone quantization (DLCQ) in an arbitrary background, a quantization that appears in nonperturbative approaches to quantum field theory and string/M-theory, such as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds.


  1. J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys. 42 (2001) 3127 [hep-th/0009181] [INSPIRE].

  2. I.R. Klebanov and J.M. Maldacena, (1+1)-dimensional NCOS and its U(N) gauge theory dual, Int. J. Mod. Phys. A 16 (2001) 922 [hep-th/0006085] [INSPIRE].

  3. U.H. Danielsson, A. Guijosa and M. Kruczenski, IIA/B, wound and wrapped, JHEP 10 (2000) 020 [hep-th/0009182] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. J. Gomis, J. Gomis and K. Kamimura, Non-relativistic superstrings: a new soluble sector of AdS 5 × S 5, JHEP 12 (2005) 024 [hep-th/0507036] [INSPIRE].

  5. R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan gravity, Class. Quant. Grav. 29 (2012) 235020 [arXiv:1206.5176] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. E. Bergshoeff, J. Gomis, J. Rosseel, C. Şimsek and Z. Yan, in preparation, (2018).

  7. C. Batlle, J. Gomis and D. Not, Extended Galilean symmetries of non-relativistic strings, JHEP 02 (2017) 049 [arXiv:1611.00026] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. J. Gomis and P.K. Townsend, The Galilean superstring, JHEP 02 (2017) 105 [arXiv:1612.02759] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. C. Batlle, J. Gomis, L. Mezincescu and P.K. Townsend, Tachyons in the Galilean limit, JHEP 04 (2017) 120 [arXiv:1702.04792] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. T. Harmark, J. Hartong and N.A. Obers, Nonrelativistic strings and limits of the AdS/CFT correspondence, Phys. Rev. D 96 (2017) 086019 [arXiv:1705.03535] [INSPIRE].

  11. J. Klusoň, Remark about non-relativistic string in Newton-Cartan background and null reduction, JHEP 05 (2018) 041 [arXiv:1803.07336] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

  13. L. Susskind, Another conjecture about M(atrix) theory, hep-th/9704080 [INSPIRE].

  14. N. Seiberg, Why is the matrix model correct?, Phys. Rev. Lett. 79 (1997) 3577 [hep-th/9710009] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. A. Sen, D0-branes on T n and matrix theory, Adv. Theor. Math. Phys. 2 (1998) 51 [hep-th/9709220] [INSPIRE].

  16. S. Hellerman and J. Polchinski, Compactification in the lightlike limit, Phys. Rev. D 59 (1999) 125002 [hep-th/9711037] [INSPIRE].

  17. A. Bagchi and R. Gopakumar, Galilean conformal algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. J. Brugues, T. Curtright, J. Gomis and L. Mezincescu, Non-relativistic strings and branes as non-linear realizations of Galilei groups, Phys. Lett. B 594 (2004) 227 [hep-th/0404175] [INSPIRE].

  19. J. Brugues, J. Gomis and K. Kamimura, Newton-Hooke algebras, non-relativistic branes and generalized pp-wave metrics, Phys. Rev. D 73 (2006) 085011 [hep-th/0603023] [INSPIRE].

  20. D.H. Friedan, Nonlinear models in 2 + ϵ dimensions, Annals Phys. 163 (1985) 318 [INSPIRE].

  21. C.G. Callan Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in background fields, Nucl. Phys. B 262 (1985) 593 [INSPIRE].

  22. M. Roček and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [INSPIRE].

  23. T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

  24. T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

  25. S.M. Ko, C. Melby-Thompson, R. Meyer and J.-H. Park, Dynamics of perturbations in double field theory & non-relativistic string theory, JHEP 12 (2015) 144 [arXiv:1508.01121] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  26. K. Morand and J.-H. Park, Classification of non-Riemannian doubled-yet-gauged spacetime, Eur. Phys. J. C 77 (2017) 685 [arXiv:1707.03713] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Ziqi Yan.

Additional information

ArXiv ePrint: 1806.06071

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergshoeff, E., Gomis, J. & Yan, Z. Nonrelativistic string theory and T-duality. J. High Energ. Phys. 2018, 133 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • String Duality
  • Sigma Models
  • Bosonic Strings
  • Classical Theories of Gravity