Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The gravity dual of real-time CFT at finite temperature

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 21 November 2018
  • Volume 2018, article number 129, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The gravity dual of real-time CFT at finite temperature
Download PDF
  • Marcelo Botta-Cantcheff1,
  • Pedro J. Martínez1 &
  • Guillermo A. Silva  ORCID: orcid.org/0000-0003-3099-91451 
  • 383 Accesses

  • 16 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present a spherically symmetric aAdS gravity solution with Schwinger-Keldysh boundary condition dual to a CFT at finite temperature defined on a complex time contour. The geometry is built by gluing the exterior of a two-sided AdS Black Hole, the (aAdS) Einstein-Rosen wormhole, with two Euclidean black hole halves. These pieces are interpreted as the gravity duals of the two Euclidean β/2 segments in the SK path, each coinciding with a Hartle-Hawking-Maldacena (TFD) vacuum state, while the Lorentzian regions naturally describes the real-time evolution of the TFD doubled system.

Within the context of Skenderis and van Rees real-time holographic prescription, the new solution should be compared to the Thermal AdS spacetime since both contribute to the gravitational path integral. In this framework, we compute the time ordered 2-pt functions of scalar CFT operators via a non-back-reacting Klein-Gordon field for both backgrounds and confront the results. When solving for the field we find that the gluing leads to a geometric realization of the Unruh trick via a completely holographic prescription. Interesting observations follow from \( \left\langle {\mathcal{O}}_L{\mathcal{O}}_R\right\rangle \), which capture details of the entanglement of the (ground) state and the connectivity of the spacetime.

Article PDF

Download to read the full article text

Similar content being viewed by others

Exact cosmological models in metric-affine F(R, T) gravity

Article Open access 21 June 2024

Nonmetric geometric flows and quasicrystalline topological phases for dark energy and dark matter in $$f(Q)$$ cosmology

Article Open access 28 June 2024

Quantum and higher curvature corrections to the anti-de Sitter black hole

Article 08 May 2024
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  2. S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. C.P. Herzog and D.T. Son, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP 03 (2003) 046 [hep-th/0212072] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. D.T. Son and A.O. Starinets, Viscosity, Black Holes and Quantum Field Theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [INSPIRE].

    Article  ADS  Google Scholar 

  6. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [INSPIRE].

  7. V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].

  8. V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].

  9. V. Balasubramanian, S.B. Giddings and A.E. Lawrence, What do CFTs tell us about Anti-de Sitter space-times?, JHEP 03 (1999) 001 [hep-th/9902052] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  10. D. Marolf, States and boundary terms: Subtleties of Lorentzian AdS/CFT, JHEP 05 (2005) 042 [hep-th/0412032] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. B.C. van Rees, Real-time gauge/gravity duality and ingoing boundary conditions, Nucl. Phys. Proc. Suppl. 192-193 (2009) 193 [arXiv:0902.4010] [INSPIRE].

  13. J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [Sov. Phys. JETP 20 (1965) 1018] [INSPIRE].

  15. H. Umezawa, Advanced field theory: Micro, macro, and thermal physics, AIP, New York U.S.A. (1993) [INSPIRE].

  16. A.K. Das, Finite Temperature Field Theory, World Scientific, Singapore (1997).

  17. H. Matsumoto, Y. Nakano, H. Umezawa, F. Mancini and M. Marinaro, Thermo Field Dynamics in Interaction Representation, Prog. Theor. Phys. 70 (1983) 599 [INSPIRE].

    Article  ADS  Google Scholar 

  18. Y. Takahashi and H. Umezawa, Thermo field dynamics, Int. J. Mod. Phys. B 10 (1996) 1755 [INSPIRE].

  19. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. J.B. Hartle and S.W. Hawking, Wave Function of the Universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].

  21. K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].

    Article  ADS  Google Scholar 

  22. K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].

  23. W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [INSPIRE].

  24. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

  25. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Fubini, A.J. Hanson and R. Jackiw, New approach to field theory, Phys. Rev. D 7 (1973) 1732 [INSPIRE].

  27. M. Botta-Cantcheff, P. Martínez and G.A. Silva, On excited states in real-time AdS/CFT, JHEP 02 (2016) 171 [arXiv:1512.07850] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. F.C. Khanna, A.P.C. Malbouisson, J.M.C. Malbouisson and A.R. Santana, Thermal quantum field theory: Algebraic aspects and applications, World Scientific Publishing Company (2009) [ISBN-13: 978-9812818874].

  29. J. Oz-Vogt, A. Mann and M. Revzen, Thermal Coherent States and Thermal Squeezed States, J. Mod. Opt. 38 (1991) 2339.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. M. Botta-Cantcheff and P.J. Martínez, Which quantum states are dual to classical spacetimes?, arXiv:1703.03483 [INSPIRE].

  31. M. Botta-Cantcheff, P.J. Martínez and G.A. Silva, Holographic excited states in AdS Black Holes, to appear.

  32. M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].

  34. E. D’Hoker and D.Z. Freedman, Supersymmetric gauge theories and the AdS/CFT correspondence, in proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics (TASI 2001): Strings, Branes and EXTRA Dimensions, Boulder, Colorado, U.S.A., 3-29 June 2001, S.S. Gubser and J.D. Lykken eds., World Scientific, River Edge NJ U.S.A. (2004), pp. 3-158 [hep-th/0201253v2] [INSPIRE].

  35. W. Mück, Studies on the AdS/CFT correspondence, Ph.D. Thesis, Simon Fraser University, Burnaby BC Canada (1999).

  36. W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

  37. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. M. Botta Cantcheff, Quantum states of the spacetime and formation of black holes in AdS, Int. J. Mod. Phys. D 21 (2012) 1242009 [arXiv:1205.3113] [INSPIRE].

  39. M. Botta-Cantcheff, P.J. Martínez and G.A. Silva, Interacting fields in real-time AdS/CFT, JHEP 03 (2017) 148 [arXiv:1703.02384] [INSPIRE].

  40. D. Marolf, O. Parrikar, C. Rabideau, A. Izadi Rad and M. Van Raamsdonk, From Euclidean Sources to Lorentzian Spacetimes in Holographic Conformal Field Theories, JHEP 06 (2018) 077 [arXiv:1709.10101] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. J.M. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. R.E. Arias, M. Botta Cantcheff and G.A. Silva, Lorentzian AdS, Wormholes and Holography, Phys. Rev. D 83 (2011) 066015 [arXiv:1012.4478] [INSPIRE].

  43. P. Gao, D.L. Jafferis and A. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. J.M. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Botta Cantcheff, A.L. Gadelha, D.F.Z. Marchioro and D.L. Nedel, Entanglement from Dissipation and Holographic Interpretation, Eur. Phys. J. C 78 (2018) 105 [arXiv:1702.02069] [INSPIRE].

  46. D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT d /AdS d+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].

  47. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Instituto de Física de La Plata, CCT La Plata, CONICET & Departamento de Física, Universidad Nacional de La Plata, C.C. 67, La Plata, 1900, Argentina

    Marcelo Botta-Cantcheff, Pedro J. Martínez & Guillermo A. Silva

Authors
  1. Marcelo Botta-Cantcheff
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pedro J. Martínez
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Guillermo A. Silva
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Pedro J. Martínez.

Additional information

ArXiv ePrint: 1808.10306

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botta-Cantcheff, M., Martínez, P.J. & Silva, G.A. The gravity dual of real-time CFT at finite temperature. J. High Energ. Phys. 2018, 129 (2018). https://doi.org/10.1007/JHEP11(2018)129

Download citation

  • Received: 31 August 2018

  • Accepted: 08 November 2018

  • Published: 21 November 2018

  • DOI: https://doi.org/10.1007/JHEP11(2018)129

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Black Holes
  • Thermal Field Theory
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2024 Springer Nature