S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev.
177 (1969) 2426 [INSPIRE].
ADS
Article
Google Scholar
J.S. Bell and R. Jackiw, A PCAC puzzle: π
0 → γγ in the σ model, Nuovo Cim.
A 60 (1969) 47 [INSPIRE].
ADS
Article
Google Scholar
W.A. Bardeen, Anomalous Ward identities in spinor field theories, Phys. Rev.
184 (1969) 1848 [INSPIRE].
ADS
Article
Google Scholar
G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett.
37 (1976) 8 [INSPIRE].
G. ’t Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle, Phys. Rev.
D 14 (1976) 3432 [Erratum ibid.
D 18 (1978) 2199] [INSPIRE].
A.A. Belavin et al., Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett.
B 59 (1975) 85 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
I. Affleck, On constrained instantons, Nucl. Phys.
B 191 (1981) 429 [INSPIRE].
ADS
Article
Google Scholar
V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett.
B 155 (1985) 36.
ADS
Article
Google Scholar
P.B. Arnold and L.D. McLerran, Sphalerons, small fluctuations and baryon number violation in electroweak theory, Phys. Rev.
D 36 (1987) 581 [INSPIRE].
ADS
Google Scholar
A. Ringwald, Rate of anomalous baryon and lepton number violation at finite temperature in standard electroweak theory, Phys. Lett.
B 201 (1988) 510 [INSPIRE].
ADS
Article
Google Scholar
V.A. Rubakov and M.E. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk
166 (1996) 493 [hep-ph/9603208] [INSPIRE].
A. Ringwald, High-energy breakdown of perturbation theory in the electroweak instanton sector, Nucl. Phys.
B 330 (1990) 1 [INSPIRE].
ADS
Article
Google Scholar
O. Espinosa, High-energy behavior of baryon and lepton number violating scattering amplitudes and breakdown of unitarity in the standard model, Nucl. Phys.
B 343 (1990) 310 [INSPIRE].
ADS
Article
Google Scholar
M.P. Mattis, The riddle of high-energy baryon number violation, Phys. Rept.
214 (1992) 159 [INSPIRE].
ADS
Article
Google Scholar
P.G. Tinyakov, Instanton like transitions in high-energy collisions, Int. J. Mod. Phys.
A 8 (1993) 1823 [INSPIRE].
ADS
Article
Google Scholar
N.S. Manton, Topology in the Weinberg-Salam theory, Phys. Rev.
D 28 (1983) 2019 [INSPIRE].
ADS
MathSciNet
Google Scholar
F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev.
D 30 (1984) 2212 [INSPIRE].
ADS
Google Scholar
S. Yu. Khlebnikov, V.A. Rubakov and P.G. Tinyakov, Instanton induced cross-sections below the sphaleron, Nucl. Phys.
B 350 (1991) 441 [INSPIRE].
ADS
Article
Google Scholar
V.V. Khoze and A. Ringwald, Total cross-section for anomalous fermion number violation via dispersion relation, Nucl. Phys.
B 355 (1991) 351 [INSPIRE].
ADS
Article
Google Scholar
A.H. Mueller, On higher order semiclassical corrections to high-energy cross-sections in the one instanton sector, Nucl. Phys.
B 364 (1991) 109 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Diakonov and M.V. Polyakov, Baryon number nonconservation at high-energies and instanton interactions, Nucl. Phys.
B 389 (1993) 109 [INSPIRE].
ADS
Article
Google Scholar
I. Balitsky and A. Schafer, Valley method versus instanton induced effective Lagrangian up to (E/E
sphaleron)8/3, Nucl. Phys.
B 404 (1993) 639 [hep-ph/9304261] [INSPIRE].
A. Ringwald, Electroweak instantons/sphalerons at VLHC?, Phys. Lett.
B 555 (2003) 227 [hep-ph/0212099] [INSPIRE].
V.I. Zakharov, Classical corrections to instanton induced interactions, Nucl. Phys.
B 371 (1992) 637 [INSPIRE].
ADS
Article
Google Scholar
H. Aoyama and H. Goldberg, Anomalous baryon number nonconservation in pp collisions at 40 TeV, Phys. Lett.
B 188 (1987) 506 [INSPIRE].
ADS
Article
Google Scholar
M.J. Gibbs and B.R. Webber, HERBVI: a program for simulation of baryon and lepton number violating processes, Comput. Phys. Commun.
90 (1995) 369 [hep-ph/9504232] [INSPIRE].
M.J. Gibbs, A. Ringwald, B.R. Webber and J.T. Zadrozny, Monte Carlo simulation of baryon and lepton number violating processes at high-energies, Z. Phys.
C 66 (1995) 285 [hep-ph/9406266] [INSPIRE].
S. Moch, A. Ringwald and F. Schrempp, Instantons in deep inelastic scattering: The Simplest process, Nucl. Phys.
B 507 (1997) 134 [hep-ph/9609445] [INSPIRE].
A. Ringwald and F. Schrempp, Instanton induced cross-sections in deep inelastic scattering, Phys. Lett.
B 438 (1998) 217 [hep-ph/9806528] [INSPIRE].
A. Ringwald and F. Schrempp, QCDINS 2.0: a Monte Carlo generator for instanton induced processes in deep inelastic scattering, Comput. Phys. Commun.
132 (2000) 267 [hep-ph/9911516] [INSPIRE].
H1 collaboration, C. Adloff et al., Search for QCD instanton induced processes in deep inelastic scattering at HERA, Eur. Phys. J.
C 25 (2002) 495 [hep-ex/0205078] [INSPIRE].
ZEUS collaboration, S. Chekanov et al., Search for QCD instanton induced events in deep inelastic ep scattering at HERA, Eur. Phys. J.
C 34 (2004) 255 [hep-ex/0312048] [INSPIRE].
H1 collaboration, V. Andreev et al., Search for QCD instanton-induced processes at HERA in the high-Q
2
domain, Eur. Phys. J.
C 76 (2016) 381 [arXiv:1603.05567] [INSPIRE].
S.H.H. Tye and S.S.C. Wong, Bloch wave function for the periodic sphaleron potential and unsuppressed baryon and lepton number violating processes, Phys. Rev.
D 92 (2015) 045005 [arXiv:1505.03690] [INSPIRE].
ADS
Google Scholar
J. Ellis and K. Sakurai, Search for sphalerons in proton-proton collisions, JHEP
04 (2016) 086 [arXiv:1601.03654] [INSPIRE].
ADS
Article
Google Scholar
G. Brooijmans, P. Schichtel and M. Spannowsky, Cosmic ray air showers from sphalerons, Phys. Lett.
B 761 (2016) 213 [arXiv:1602.00647] [INSPIRE].
ADS
Article
Google Scholar
J. Ellis, K. Sakurai and M. Spannowsky, Search for sphalerons: IceCube vs. LHC, JHEP
05 (2016) 085 [arXiv:1603.06573] [INSPIRE].
M. Spannowsky and C. Tamarit, Sphalerons in composite and non-standard Higgs models, Phys. Rev.
D 95 (2017) 015006 [arXiv:1611.05466] [INSPIRE].
ADS
Google Scholar
K. Funakubo, K. Fuyuto and E. Senaha, Does a band structure affect sphaleron processes?, arXiv:1612.05431 [INSPIRE].
D.G. Cerdeño, P. Reimitz, K. Sakurai and C. Tamarit, B + L violation at colliders and new physics, JHEP
04 (2018) 076 [arXiv:1801.03492] [INSPIRE].
ADS
Article
Google Scholar
Y. Jho and S.C. Park, Constraining new physics with high multiplicity: I. Ultra-high energy cosmic rays on air-shower detector arrays, arXiv:1806.03063 [INSPIRE].
CMS collaboration, Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at
\( \sqrt{s}=13 \)
TeV, arXiv:1805.06013 [INSPIRE].
C. Bravo and J. Hauser, BaryoGEN, a Monte Carlo generator for sphaleron-like transitions in proton-proton collisions, arXiv:1805.02786 [INSPIRE].
A. Ringwald, F. Schrempp and C. Wetterich, Phenomenology of geometrical flavor interactions at TeV energies, Nucl. Phys.
B 365 (1991) 3 [INSPIRE].
ADS
Article
Google Scholar
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.
191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP
01 (2001) 010 [hep-ph/0011363] [INSPIRE].
G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP
02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev.
D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].
ADS
Google Scholar