L. Susskind and L. Thorlacius, Hawking radiation and back reaction, Nucl. Phys.
B 382 (1992) 123 [hep-th/9203054] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP
02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S.L. Braunstein, S. Pirandola and K. Życzkowski, Better Late than Never: Information Retrieval from Black Holes, Phys. Rev. Lett.
110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].
ADS
Article
Google Scholar
V. Coffman, J. Kundu and W.K. Wootters, Distributed entanglement, Phys. Rev.
A 61 (2000) 052306 [quant-ph/9907047] [INSPIRE].
M. Koashi and A. Winter, Monogamy of quantum entanglement and other correlations, Phys. Rev.
A 69 (2004) 022309 [quant-ph/0310037].
W.K. Wootters and W.H. Zurek, A single quantum cannot be cloned, Nature
299 (1982) 802 [INSPIRE].
ADS
Article
MATH
Google Scholar
R.M. Wald, Space, time, and gravity: the theory of the big bang and black holes, University of Chicago Press, U.S.A., (1992).
S. Lloyd and J. Preskill, Unitarity of black hole evaporation in final-state projection models, JHEP
08 (2014) 126 [arXiv:1308.4209] [INSPIRE].
ADS
Article
Google Scholar
C.H. Bennett, Simulated Time Travel, Teleportation without communication, and How to conduct a Romance with Someone who has fallen into a black hole, talk available at http://web.archive.org/web/20070206131550/http://www.research.ibm.com/people/b/bennetc/QUPONBshort.pdf, (2005).
R. Bousso and D. Stanford, Measurements without Probabilities in the Final State Proposal, Phys. Rev.
D 89 (2014) 044038 [arXiv:1310.7457] [INSPIRE].
G. ’t Hooft, On the Quantum Structure of a Black Hole, Nucl. Phys.
B 256 (1985) 727 [INSPIRE].
G. ’t Hooft, The black hole interpretation of string theory, Nucl. Phys.
B 335 (1990) 138 [INSPIRE].
L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev.
D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].
B. Toner et al., Monogamy of Bell correlations and Tsirelson’s bound, quant-ph/0611001.
J. Oppenheim and W.G. Unruh, Firewalls and flat mirrors: An alternative to the AMPS experiment which evades the Harlow-Hayden obstacle, JHEP
03 (2014) 120 [arXiv:1401.1523] [INSPIRE].
ADS
Article
Google Scholar
D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP
06 (2013) 085 [arXiv:1301.4504] [INSPIRE].
T. Banks, L. Susskind and M.E. Peskin, Difficulties for the Evolution of Pure States Into Mixed States, Nucl. Phys.
B 244 (1984) 125 [INSPIRE].
W.G. Unruh and R.M. Wald, On evolution laws taking pure states to mixed states in quantum field theory, Phys. Rev.
D 52 (1995) 2176 [hep-th/9503024] [INSPIRE].
J. Oppenheim and B. Reznik, Fundamental destruction of information and conservation laws, arXiv:0902.2361 [INSPIRE].
W. Unruh, Decoherence without dissipation, Phil. Trans. A Math. Phys. Eng. Sci.
370 (2012) 4454.
MathSciNet
Article
MATH
Google Scholar
K. Ried, M. Agnew, L. Vermeyden, D. Janzing, R.W. Spekkens and K.J. Resch, A quantum advantage for inferring causal structure, Nature Phys.
11 (2015) 414.
ADS
Article
Google Scholar
A.J. Leggett and A. Garg, Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks?, Phys. Rev. Lett.
54 (1985) 857 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Y. Aharonov, P.G. Bergmann and J.L. Lebowitz, Time symmetry in the quantum process of measurement, Phys. Rev.
134 (1964) B1410.
ADS
MathSciNet
Article
MATH
Google Scholar
D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, Rev. Mod. Phys.
88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].
D. Dieks, Communication by EPR devices, Phys. Lett.
A 92 (1982) 271 [INSPIRE].
D. Gottesman and J. Preskill, Comment on ‘The Black hole final state’, JHEP
03 (2004) 026 [hep-th/0311269] [INSPIRE].
ADS
Article
Google Scholar
E. Cohen and M. Nowakowski, Comment on “Measurements without probabilities in the final state proposal”, Phys. Rev.
D 97 (2018) 088501 [arXiv:1705.06495] [INSPIRE].