Collider production of electroweak resonances from γγ states

Abstract

We estimate production cross sections for 2-body resonances of the Electroweak Symmetry Breaking sector (in WLWL and ZLZL rescattering) from γγ scattering. We employ unitarized Higgs Effective Field Theory amplitudes previously computed coupling the two photon channel to the EWSBS. We work in the Effective Photon Approximation and examine both ee+ collisions at energies of order 1–2 TeV (as relevant for future lepton machines) and pp collisions at LHC energies. Dynamically generating a spin-0 resonance around 1.5 TeV (by appropriately choosing the parameters of the effective theory) we find that the differential cross section per unit s, p 2 t is of order 0.01 fbarn/TeV4 at the LHC. Injecting a spin-2 resonance around 2 TeV we find an additional factor 100 suppression for pt up to 200 GeV. The very small cross sections put these γγ processes, though very clean, out of reach of immediate future searches.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].

  2. [2]

    C.E. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].

    Article  Google Scholar 

  3. [3]

    B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting Ws and Zs, Nucl. Phys. 261 (1985) 379.

    ADS  Article  Google Scholar 

  5. [5]

    M.S. Chanowitz, M. Golden and H. Georgi, Low-Energy Theorems for Strongly Interacting Ws and Zs, Phys. Rev. D 36 (1987) 1490 [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    A. Dobado and J.R. Peláez, On The Equivalence theorem in the chiral perturbation theory description of the symmetry breaking sector of the standard model, Nucl. Phys. B 425 (1994) 110 [Erratum ibid. B 434 (1995) 475] [hep-ph/9401202] [INSPIRE].

  7. [7]

    A. Dobado and J.R. Pelaez, The Equivalence theorem for chiral lagrangians, Phys. Lett. B 329 (1994) 469 [Addendum ibid. B 335 (1994) 554] [hep-ph/9404239] [INSPIRE].

  8. [8]

    K. Piotrzkowski, Study of exclusive two-photon production of W+W- pairs in pp collisions at 7 TeV, and constraints on anomalous quartic couplings in CMS, PoS(Photon 2013) 026.

  9. [9]

    CMS collaboration, Evidence for exclusive γγW + W production and constraints on anomalous quartic gauge couplings in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 119 [arXiv:1604.04464] [INSPIRE].

  10. [10]

    ATLAS collaboration, Measurement of exclusive γγW + W production and search for exclusive Higgs boson production in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032011 [arXiv:1607.03745] [INSPIRE].

  11. [11]

    D0 collaboration, V.M. Abazov et al., Search for anomalous quartic WWγγ couplings in dielectron and missing energy final states in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 88 (2013) 012005 [arXiv:1305.1258] [INSPIRE].

  12. [12]

    M.G. Albrow, The CMS-TOTEM Precision Proton Spectrometer: CT-PPS, PoS(DIS2015)064.

  13. [13]

    P. Hamal, Physics prospects with the ALFA and AFP detectors, PoS(Photon 2013)027.

  14. [14]

    H. Abramowicz et al., Higgs physics at the CLIC electron-positron linear collider, Eur. Phys. J. C 77 (2017) 475 [arXiv:1608.07538] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    N. van der Kolk, The International Linear Collider - Physics and Perspectives, PoS(DIS2016)245 [arXiv:1607.00202].

  16. [16]

    K. Wang, T. Xu and L. Zhang, Collider Phenomenology of e e W W , Phys. Rev. D 95 (2017) 075021 [arXiv:1610.02618] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    S.J. Brodsky, Photon-Photon Collisions: Past and Future, Acta Phys. Polon. B 37 (2006) 619 [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    CMS collaboration, Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].

  19. [19]

    ATLAS collaboration, Search for heavy vector-like quarks coupling to light quarks in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 712 (2012) 22 [arXiv:1112.5755] [INSPIRE].

  20. [20]

    ATLAS collaboration, Search for long-lived, multi-charged particles in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Lett. B 722 (2013) 305 [arXiv:1301.5272] [INSPIRE].

  21. [21]

    R. Alonso, E.E. Jenkins and A.V. Manohar, A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space, Phys. Lett. B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  22. [22]

    D. Espriu, F. Mescia and B. Yencho, Radiative corrections to WL WL scattering in composite Higgs models, Phys. Rev. D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 1304 (2013) 140] [arXiv:1202.3415] [INSPIRE].

  24. [24]

    I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light DynamicalHiggs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].

  26. [26]

    A. Pich, I. Rosell and J.J. Sanz-Cillero, Strongly Coupled Models with a Higgs-like Boson, EPJ Web Conf. 60 (2013) 19009 [arXiv:1307.1958] [INSPIRE].

    Article  Google Scholar 

  27. [27]

    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  28. [28]

    C. Degrande et al., Effective Field Theory: A Modern Approach to Anomalous Couplings, Annals Phys. 335 (2013) 21 [arXiv:1205.4231] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [Erratum ibid. B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].

  30. [30]

    G. Buchalla and O. Catà, Effective Theory of a Dynamically Broken Electroweak Standard Model at NLO, JHEP 07 (2012) 101 [arXiv:1203.6510] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, LightHiggs, yet strong interactions, J. Phys. G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Unitarity, analyticity, dispersion relations and resonances in strongly interacting W L W L , Z L Z L and hh scattering, Phys. Rev. D 91 (2015) 075017 [arXiv:1502.04841] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Possible new resonance from W L W L -hh interchannel coupling, Phys. Rev. Lett. 114 (2015) 221803 [arXiv:1408.1193] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    D. Espriu and B. Yencho, Longitudinal WW scattering in light of theHiggs bosondiscovery, Phys. Rev. D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    T. Corbett, O.J.P. Éboli and M.C. Gonzalez-Garcia, Inverse amplitude method for the perturbative electroweak symmetry breaking sector: The singlet Higgs portal as a study case, Phys. Rev. D 93 (2016) 015005 [arXiv:1509.01585] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    M. Sekulla, W. Kilian, T. Ohl and J. Reuter, Effective Field Theory and Unitarity in Vector Boson Scattering, PoS(LHCP2016)052 [arXiv:1610.04131].

  37. [37]

    W. Kilian, T. Ohl, J. Reuter and M. Sekulla, High-Energy Vector Boson Scattering after the Higgs Discovery, Phys. Rev. D 91 (2015) 096007 [arXiv:1408.6207] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    A. Alboteanu, W. Kilian and J. Reuter, Resonances and Unitarity in Weak Boson Scattering at the LHC, JHEP 11 (2008) 010 [arXiv:0806.4145] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Coupling WW, ZZ unitarized amplitudes to γγ in the TeV region, Eur. Phys. J. C 77 (2017) 205 [arXiv:1609.06206] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    E. Fermi, On the Theory of the impact between atoms and electrically charged particles, Z. Phys. 29 (1924) 315 [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    E.J. Williams, Correlation of certain collision problems with radiation theory, Kong. Dan. Vid. Sel. Mat. Fys. Med. 13N4 (1935) 1 [INSPIRE].

  42. [42]

    C.F. von Weizsacker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88 (1934) 612 [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    I.Ya. Pomeranchuk and I.M. Shmushkevich, On processes in the interaction of -quanta with unstable particles, Nucl. Phys. 23 (1961) 452.

  44. [44]

    V.M. Budnev, I.F. Ginzburg, G.V. Meledin and V.G. Serbo, The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation, Phys. Rept. 15 (1975) 181 [INSPIRE].

  45. [45]

    H. Terazawa, Two photon processes for particle production at high-energies, Rev. Mod. Phys. 45 (1973) 615 [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    R.L. Delgado, A. Dobado, M.J. Herrero and J.J. Sanz-Cillero, One-loop γγ → W + L W L and γγZ L Z L from the Electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 07 (2014) 149 [arXiv:1404.2866] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop W L W L and Z L Z L scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 02 (2014) 121 [arXiv:1311.5993] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    J. Bijnens and F. Cornet, Two Pion Production in Photon-Photon Collisions, Nucl. Phys. B 296 (1988) 557 [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    R.L. Delgado et al., Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis, JHEP 11 (2017) 098 [arXiv:1707.04580] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    D.H. Lyth, The equivalent photon approximation, J. Phys. Colloq. 35 (1974) 113 [INSPIRE].

    Article  Google Scholar 

  51. [51]

    G. Buchalla, O. Catà, A. Celis and C. Krause, Fitting Higgs Data with Nonlinear Effective Theory, Eur. Phys. J. C 76 (2016) 233 [arXiv:1511.00988] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  52. [52]

    J. Nystrand, Electromagnetic interactions in nucleus-nucleus and proton-proton collisions, Nucl. Phys. A 752 (2005) 470 [hep-ph/0412096] [INSPIRE].

  53. [53]

    D. d’Enterria, P. Rebello Teles and D.E. Martins, Measurements of γγHiggs and γγW + W in e + e collisions at the Future Circular Collider, in Proceedings of 17th conference on Elastic and Diffractive Scattering (EDS Blois 2017), Prague Czech Republic (2017) [arXivid1712.07023] [INSPIRE].

  54. [54]

    LHC experiments Committee, CMS-TOTEM Precision Proton Spectrometer, CERN-LHCC-2014-021, TOTEM-TDR-003, CMS-TDR-13 (2014).

  55. [55]

    ATLAS collaboration, B. Giacobbe, Results and Perspectives in Forward Physics with ATLAS, Nucl. Part. Phys. Proc. 279-281 (2016) 130 [INSPIRE].

  56. [56]

    D. d’Enterria and G.G. da Silveira, Observing light-by-light scattering at the Large Hadron Collider, Phys. Rev. Lett. 111 (2013) 080405 [Erratum ibid. 116 (2016) 129901] [arXiv:1305.7142] [INSPIRE].

  57. [57]

    B.A. Kniehl, Elastic e p scattering and the Weizsacker-Williams approximation, Phys. Lett. B 254 (1991) 267 [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    M. Drees and D. Zeppenfeld, Production of Supersymmetric Particles in Elastic ep Collisions, Phys. Rev. D 39 (1989) 2536 [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    A. Esmaili, S. Khatibi and M. Mohammadi Najafabadi, Constraining the monochromatic gamma-rays from dark matter annihilation by the LHC, Phys. Rev. D 96 (2017) 015027 [arXiv:1611.09320] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    I.T. Lorenz and U.-G. Meissner, Reduction of the proton radius discrepancy by 3σ, Phys. Lett. B 737 (2014) 57 [arXiv:1406.2962] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    G.P. Lepage and S.J. Brodsky, Exclusive Processes in Quantum Chromodynamics: The Form-Factors of Baryons at Large Momentum Transfer, Phys. Rev. Lett. 43 (1979) 545 [Erratum ibid. 43 (1979) 1625] [INSPIRE].

  62. [62]

    S.J. Brodsky and G.R. Farrar, Scaling Laws at Large Transverse Momentum, Phys. Rev. Lett. 31 (1973) 1153 [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    J.J. Kelly, Simple parametrization of nucleon form factors, Phys. Rev. C 70 (2004) 068202 [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    J. Segovia, I.C. Cloet, C.D. Roberts and S.M. Schmidt, Nucleon and Δ elastic and transition form factors, Few Body Syst. 55 (2014) 1185 [arXiv:1408.2919] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    C. Schmidt, J. Pumplin, D. Stump and C.P. Yuan, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev. D 93 (2016) 114015 [arXiv:1509.02905] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

  67. [67]

    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].

  68. [68]

    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].

  69. [69]

    A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    J. Gao, L. Harland-Lang and J. Rojo, The Structure of the Proton in the LHC Precision Era, Phys. Rept. 742 (2018) 1 [arXiv:1709.04922] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  71. [71]

    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, The photon PDF in events with rapidity gaps, Eur. Phys. J. C 76 (2016) 255 [arXiv:1601.03772] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    H. Gomes, S. Gryb, T. Koslowski, F. Mercati and L. Smolin, A Shape Dynamical Approach to Holographic Renormalization, Eur. Phys. J. C 75 (2015) 3 [arXiv:1305.6315] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    A.D. Martin and M.G. Ryskin, The photon PDF of the proton, Eur. Phys. J. C 74 (2014) 3040 [arXiv:1406.2118] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    M. Gluck, C. Pisano and E. Reya, The Polarized and unpolarized photon content of the nucleon, Phys. Lett. B 540 (2002) 75 [hep-ph/0206126] [INSPIRE].

  75. [75]

    CMS collaboration, Search for high-mass diphoton resonances in proton–proton collisions at 13 TeV and combination with 8 TeV search, Phys. Lett. B 767 (2017) 147 [arXiv:1609.02507] [INSPIRE].

  76. [76]

    K. Ghosh, S. Jana and S. Nandi, Neutrino Mass Generation at TeV Scale and New Physics Signatures from Charged Higgs at the LHC for Photon Initiated Processes, JHEP 03 (2018) 180 [arXiv:1705.01121] [INSPIRE].

    Article  Google Scholar 

  77. [77]

    K.S. Babu and S. Jana, Probing Doubly Charged Higgs Bosons at the LHC through Photon Initiated Processes, Phys. Rev. D 95 (2017) 055020 [arXiv:1612.09224] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    P. Lebiedowicz and A. Szczurek, Exclusive production of heavy charged Higgs boson pairs in the ppppH + H reaction at the LHC and a future circular collider, Phys. Rev. D 91 (2015) 095008 [arXiv:1502.03323] [INSPIRE].

    ADS  Google Scholar 

  79. [79]

    M. Luszczak, A. Szczurek and C. Royon, W + W pair production in proton-proton collisions: small missing terms, JHEP 02 (2015) 098 [arXiv:1409.1803] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

  81. [81]

    T. Appelquist and C.W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].

    ADS  Google Scholar 

  82. [82]

    E. Yehudai, Probing W gamma couplings using γγW + W , Phys. Rev. D 44 (1991) 3434 [INSPIRE].

    ADS  Google Scholar 

  83. [83]

    A. Denner, S. Dittmaier and R. Schuster, Radiative corrections to γγW + W in the electroweak standard model, Nucl. Phys. B 452 (1995) 80 [hep-ph/9503442] [INSPIRE].

  84. [84]

    J. de Blas, O. Eberhardt and C. Krause, Current and Future Constraints on Higgs Couplings in the Nonlinear Effective Theory, JHEP 07 (2018) 048 [arXiv:1803.00939] [INSPIRE].

    Article  Google Scholar 

  85. [85]

    A. Dobado, F.J. Llanes-Estrada and J.J. Sanz-Cillero, Resonant production of Wh and Zh at the LHC, JHEP 03 (2018) 159 [arXiv:1711.10310] [INSPIRE].

    Article  Google Scholar 

  86. [86]

    R. Delgado López, Study of the Electroweak Symmetry Breaking Sector for the LHC, Springer Theses, Springer, Berlin Germany (2017).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felipe J. Llanes-Estrada.

Additional information

ArXiv ePrint: 1710.07548

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delgado, R.L., Dobado, A., Espada, M. et al. Collider production of electroweak resonances from γγ states. J. High Energ. Phys. 2018, 10 (2018). https://doi.org/10.1007/JHEP11(2018)010

Download citation

Keywords

  • Beyond Standard Model
  • Chiral Lagrangians
  • Higgs Physics
  • Scattering Amplitudes