Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Final-state QED multipole radiation in antenna parton showers

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 27 November 2017
  • Volume 2017, article number 182, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Final-state QED multipole radiation in antenna parton showers
Download PDF
  • Ronald Kleiss1 &
  • Rob Verheyen1 
  • 375 Accesses

  • 8 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We present a formalism for a fully coherent QED parton shower. The complete multipole structure of photonic radiation is incorporated in a single branching kernel. The regular on-shell 2 → 3 kinematic picture is kept intact by dividing the radiative phase space into sectors, allowing for a definition of the ordering variable that is similar to QCD antenna showers. A modified version of the Sudakov veto algorithm is discussed that increases performance at the cost of the introduction of weighted events. Due to the absence of a soft singularity, the formalism for photon splitting is very similar to the QCD analogon of gluon splitting. However, since no color structure is available to guide the selection of a spectator, a weighted selection procedure from all available spectators is introduced.

Article PDF

Download to read the full article text

Similar content being viewed by others

MiNNLOPS: a new method to match NNLO QCD to parton showers

Article Open access 27 May 2020

VINCIA for hadron colliders

Article Open access 28 October 2016

A partitioned dipole-antenna shower with improved transverse recoil

Article Open access 18 July 2024
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].

    Article  ADS  Google Scholar 

  2. V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [Yad. Fiz. 15 (1972) 781] [INSPIRE].

  3. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e + e − annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977) 641 [Zh. Eksp. Teor. Fiz. 73 (1977) 1216] [INSPIRE].

  4. G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].

    Article  ADS  Google Scholar 

  5. G. Marchesini and B.R. Webber, Simulation of QCD jets including soft gluon interference, Nucl. Phys. B 238 (1984) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Bengtsson and T. Sjöstrand, A comparative study of coherent and noncoherent parton shower evolution, Nucl. Phys. B 289 (1987) 810 [INSPIRE].

    Article  ADS  Google Scholar 

  7. D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].

  8. D.A. Kosower, Antenna factorization in strongly ordered limits, Phys. Rev. D 71 (2005) 045016 [hep-ph/0311272] [INSPIRE].

  9. G. Gustafson and U. Pettersson, Dipole formulation of QCD cascades, Nucl. Phys. B 306 (1988) 746 [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].

  11. G. Abelof and A. Gehrmann-De Ridder, Antenna subtraction for the production of heavy particles at hadron colliders, JHEP 04 (2011) 063 [arXiv:1102.2443] [INSPIRE].

    Article  ADS  Google Scholar 

  12. L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].

  13. J.-C. Winter and F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines, JHEP 07 (2008) 040 [arXiv:0712.3913] [INSPIRE].

    Article  ADS  Google Scholar 

  14. W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-order corrections to timelike jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].

  15. A. Gehrmann-De Ridder, M. Ritzmann and P.Z. Skands, Timelike dipole-antenna showers with massive fermions, Phys. Rev. D 85 (2012) 014013 [arXiv:1108.6172] [INSPIRE].

  16. N. Fischer, S. Prestel, M. Ritzmann and P. Skands, Vincia for hadron colliders, Eur. Phys. J. C 76 (2016) 589 [arXiv:1605.06142] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J.J. Lopez-Villarejo and P.Z. Skands, Efficient matrix-element matching with sector showers, JHEP 11 (2011) 150 [arXiv:1109.3608] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].

  19. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

  20. S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S. Plätzer and S. Gieseke, Coherent parton showers with local recoils, JHEP 01 (2011) 024 [arXiv:0909.5593] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J. C 75 (2015) 461 [arXiv:1506.05057] [INSPIRE].

    Article  ADS  Google Scholar 

  23. E. Barberio and Z. Was, PHOTOS: a universal Monte Carlo for QED radiative corrections. Version 2.0, Comput. Phys. Commun. 79 (1994) 291 [INSPIRE].

  24. S. Höche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].

  25. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  26. D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].

    Article  ADS  Google Scholar 

  27. K. Hamilton and P. Richardson, Simulation of QED radiation in particle decays using the YFS formalism, JHEP 07 (2006) 010 [hep-ph/0603034] [INSPIRE].

  28. M. Schönherr and F. Krauss, Soft photon radiation in particle decays in SHERPA, JHEP 12 (2008) 018 [arXiv:0810.5071] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Jadach and B.F.L. Ward, Exponentiation of soft photons in the Monte Carlo: the case of Bonneau and Martin, Phys. Rev. D 38 (1988) 2897 [Erratum ibid. D 39 (1989) 1472] [INSPIRE].

  30. S. Jadach, B.F.L. Ward and Z. Was, Coherent exclusive exponentiation for precision Monte Carlo calculations, Nucl. Phys. Proc. Suppl. 89 (2000) 106 [hep-ph/0012124] [INSPIRE].

  31. S. Jadach, B.F.L. Ward and Z. Was, KK MC 4.22: coherent exclusive exponentiation of electroweak corrections for \( f\overline{f}\to {f}^{\prime }{\overline{f}}^{\prime } \) at the LHC and muon colliders, Phys. Rev. D 88 (2013) 114022 [arXiv:1307.4037] [INSPIRE].

  32. S. Yost and B.F.L. Ward, HERWIRI 2.1: electroweak corrections for hadron scattering, PoS(LL2016)062 [arXiv:1606.09032] [INSPIRE].

  33. S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [INSPIRE].

  34. S. Catani, S. Dittmaier and Z. Trócsányi, One loop singular behavior of QCD and SUSY QCD amplitudes with massive partons, Phys. Lett. B 500 (2001) 149 [hep-ph/0011222] [INSPIRE].

  35. Z. Nagy and D.E. Soper, Ordering variable for parton showers, JHEP 06 (2014) 178 [arXiv:1401.6366] [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Kleiss and R. Verheyen, Competing Sudakov veto algorithms, Eur. Phys. J. C 76 (2016) 359 [arXiv:1605.09246] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Plätzer and M. Sjodahl, The Sudakov veto algorithm reloaded, Eur. Phys. J. Plus 127 (2012) 26 [arXiv:1108.6180] [INSPIRE].

    Article  Google Scholar 

  38. L. Lönnblad, Fooling around with the Sudakov veto algorithm, Eur. Phys. J. C 73 (2013) 2350 [arXiv:1211.7204] [INSPIRE].

  39. S. Höche, F. Krauss, M. Schönherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].

    Article  Google Scholar 

  40. E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and parton-shower calculations, Eur. Phys. J. C 76 (2016) 590 [arXiv:1606.08753] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Mrenna and P. Skands, Automated parton-shower variations in PYTHIA 8, Phys. Rev. D 94 (2016) 074005 [arXiv:1605.08352] [INSPIRE].

  42. J. Bellm, S. Plätzer, P. Richardson, A. Siódmok and S. Webster, Reweighting parton showers, Phys. Rev. D 94 (2016) 034028 [arXiv:1605.08256] [INSPIRE].

  43. R. Kleiss, W.J. Stirling and S.D. Ellis, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun. 40 (1986) 359 [INSPIRE].

    Article  ADS  Google Scholar 

  44. N. Fischer and S. Prestel, Combining states without scale hierarchies with ordered parton showers, Eur. Phys. J. C 77 (2017) 601 [arXiv:1706.06218] [INSPIRE].

    Article  ADS  Google Scholar 

  45. N. Fischer, A. Lifson and P. Skands, Helicity antenna showers for hadron colliders, Eur. Phys. J. C 77 (2017) 719 [arXiv:1708.01736] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M. Hirai, S. Kumano and M. Miyama, Numerical solution of Q 2 evolution equations for polarized structure functions, Comput. Phys. Commun. 108 (1998) 38 [hep-ph/9707220] [INSPIRE].

  48. S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].

    Article  ADS  Google Scholar 

  49. L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].

  50. N. Lavesson and L. Lönnblad, W +jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [INSPIRE].

  51. ATLAS collaboration, Measurement of the W-boson mass in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, arXiv:1701.07240 [INSPIRE].

  52. S. Jadach, B.F.L. Ward, Z.A. Was and S.A. Yost, Systematic studies of exact \( \mathcal{O}\left({\alpha}^2L\right) \) CEEX EW corrections in a hadronic MC for precision Z/γ ∗ physics at LHC energies, arXiv:1707.06502 [INSPIRE].

  53. S. Jadach and R.A. Kycia, Lineshape of the Higgs boson in future lepton colliders, Phys. Lett. B 755 (2016) 58 [arXiv:1509.02406] [INSPIRE].

  54. M. Greco, T. Han and Z. Liu, ISR effects for resonant Higgs production at future lepton colliders, Phys. Lett. B 763 (2016) 409 [arXiv:1607.03210] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute for Mathematics, Astrophysics and Particle Physics, Faculty of Science, Mailbox 79, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL, Nijmegen, The Netherlands

    Ronald Kleiss & Rob Verheyen

Authors
  1. Ronald Kleiss
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Rob Verheyen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Rob Verheyen.

Additional information

ArXiv ePrint: 1709.04485

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleiss, R., Verheyen, R. Final-state QED multipole radiation in antenna parton showers. J. High Energ. Phys. 2017, 182 (2017). https://doi.org/10.1007/JHEP11(2017)182

Download citation

  • Received: 19 September 2017

  • Revised: 13 November 2017

  • Accepted: 20 November 2017

  • Published: 27 November 2017

  • DOI: https://doi.org/10.1007/JHEP11(2017)182

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Precision QED
  • Resummation
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature