Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis

Abstract

In the present work we study the production of vector resonances at the LHC by means of the vector boson scattering WZWZ and explore the sensitivities to these resonances for the expected future LHC luminosities. We are assuming that these vector resonances are generated dynamically from the self interactions of the longitudinal gauge bosons, WL and ZL, and work under the framework of the electroweak chiral Lagrangian to describe in a model independent way the supposedly strong dynamics of these modes. The properties of the vector resonances, mass, width and couplings to the W and Z gauge bosons are derived from the inverse amplitude method approach. We implement all these features into a single model, the IAM-MC, adapted for MonteCarlo, built in a Lagrangian language in terms of the electroweak chiral Lagrangian and a chiral Lagrangian for the vector resonances, which mimics the resonant behavior of the IAM and provides unitary amplitudes. The model has been implemented in MadGraph, allowing us to perform a realistic study of the signal versus background events at the LHC. In particular, we have focused our study on the ppWZjj type of events, discussing first on the potential of the hadronic and semileptonic channels of the final WZ, and next exploring in more detail the most clear signals. These are provided by the leptonic decays of the gauge bosons, leading to a final state with +1 1 +2 νjj,  = e, μ, having a very distinctive signature, and showing clearly the emergence of the resonances with masses in the range of 1.5–2.5 TeV, which we have explored.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

  2. [2]

    T. Appelquist and C.W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev. D 22 (1980) 200 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    A.C. Longhitano, Heavy Higgs Bosons in the Weinberg-Salam Model, Phys. Rev. D 22 (1980) 1166 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    A.C. Longhitano, Low-Energy Impact of a Heavy Higgs Boson Sector, Nucl. Phys. B 188 (1981) 118 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    M.S. Chanowitz and M.K. Gaillard, The TeV Physics of Strongly Interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    O. Cheyette and M.K. Gaillard, The Effective One Loop Action in the Strongly Interacting Standard Electroweak Theory, Phys. Lett. B 197 (1987) 205 [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    A. Dobado and M.J. Herrero, Phenomenological Lagrangian Approach to the Symmetry Breaking Sector of the Standard Model, Phys. Lett. B 228 (1989) 495 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A. Dobado and M.J. Herrero, Testing the Hypothesis of Strongly Interacting Longitudinal Weak Bosons in Electron-Positron Collisions at TeV Energies, Phys. Lett. B 233 (1989) 505 [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    S. Weinberg, Phenomenological Lagrangians, Physica A 96 (1979) 327 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    A. Dobado, D. Espriu and M.J. Herrero, Chiral Lagrangians as a tool to probe the symmetry breaking sector of the SM at LEP, Phys. Lett. B 255 (1991) 405 [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    D. Espriu and M.J. Herrero, Chiral Lagrangians and precision tests of the symmetry breaking sector of the Standard Model, Nucl. Phys. B 373 (1992) 117 [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    A. Dobado, M.J. Herrero and J. Terron, The Role of Chiral Lagrangians in Strongly Interacting W L W L Signals at pp Supercolliders, Z. Phys. C 50 (1991) 205 [INSPIRE].

    Google Scholar 

  15. [15]

    A. Dobado, M.J. Herrero and J. Terron, W ± Z 0 signals from the strongly interacting symmetry breaking sector, Z. Phys. C 50 (1991) 465 [INSPIRE].

    Google Scholar 

  16. [16]

    A. Dobado, M.J. Herrero, J.R. Pelaez, E. Ruiz Morales and M.T. Urdiales, Learning about the strongly interacting symmetry breaking sector at LHC, Phys. Lett. B 352 (1995) 400 [hep-ph/9502309] [INSPIRE].

  17. [17]

    A. Dobado, M.J. Herrero, J.R. Pelaez and E. Ruiz Morales, CERN LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector, Phys. Rev. D 62 (2000) 055011 [hep-ph/9912224] [INSPIRE].

  18. [18]

    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].

  19. [19]

    G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [Erratum ibid. B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].

  20. [20]

    D. Espriu and B. Yencho, Longitudinal WW scattering in light of the “Higgs boson” discovery, Phys. Rev. D 87 (2013) 055017 [arXiv:1212.4158] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Light ‘Higgs’, yet strong interactions, J. Phys. G 41 (2014) 025002 [arXiv:1308.1629] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop W L W L and Z L Z L scattering from the electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 02 (2014) 121 [arXiv:1311.5993] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    D. Espriu, F. Mescia and B. Yencho, Radiative corrections to W L W L scattering in composite Higgs models, Phys. Rev. D 88 (2013) 055002 [arXiv:1307.2400] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    D. Espriu and F. Mescia, Unitarity and causality constraints in composite Higgs models, Phys. Rev. D 90 (2014) 015035 [arXiv:1403.7386] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    R.L. Delgado, A. Dobado, M.J. Herrero and J.J. Sanz-Cillero, One-loop γγ → W + L W L and γγ → Z L Z L from the Electroweak Chiral Lagrangian with a light Higgs-like scalar, JHEP 07 (2014) 149 [arXiv:1404.2866] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    G. Buchalla, O. Catà, A. Celis and C. Krause, Fitting Higgs Data with Nonlinear Effective Theory, Eur. Phys. J. C 76 (2016) 233 [arXiv:1511.00988] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  28. [28]

    P. Arnan, D. Espriu and F. Mescia, Interpreting a 2 TeV resonance in WW scattering, Phys. Rev. D 93 (2016) 015020 [arXiv:1508.00174] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    LHC Higgs Cross section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs Cross sections: 4. Deciphering the Nature of the Higgs Sector, CYRM-2017-002 [CERN-2017-002-M] [arXiv:1610.07922] [INSPIRE].

  30. [30]

    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].

  32. [32]

    ATLAS collaboration, Evidence for Electroweak Production of W ± W ± jj in pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett. 113 (2014) 141803 [arXiv:1405.6241] [INSPIRE].

  33. [33]

    ATLAS collaboration, Updated coupling measurements of the Higgs boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2014-009 (2014).

  34. [34]

    M. Fabbrichesi, M. Pinamonti, A. Tonero and A. Urbano, Vector boson scattering at the LHC: A study of the WWWW channels with the Warsaw cut, Phys. Rev. D 93 (2016) 015004 [arXiv:1509.06378] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    ATLAS collaboration, Search for anomalous electroweak production of WW/WZ in association with a high-mass dijet system in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 95 (2017) 032001 [arXiv:1609.05122] [INSPIRE].

  36. [36]

    A. Pich, I. Rosell and J.J. Sanz-Cillero, One-Loop Calculation of the Oblique S Parameter in Higgsless Electroweak Models, JHEP 08 (2012) 106 [arXiv:1206.3454] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    A. Pich, I. Rosell and J.J. Sanz-Cillero, Viability of strongly-coupled scenarios with a light Higgs-like boson, Phys. Rev. Lett. 110 (2013) 181801 [arXiv:1212.6769] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    A. Pich, I. Rosell and J.J. Sanz-Cillero, Oblique S and T Constraints on Electroweak Strongly-Coupled Models with a Light Higgs, JHEP 01 (2014) 157 [arXiv:1310.3121] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    A. Pich, I. Rosell, J. Santos and J.J. Sanz-Cillero, Low-energy signals of strongly-coupled electroweak symmetry-breaking scenarios, Phys. Rev. D 93 (2016) 055041 [arXiv:1510.03114] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    A. Pich, I. Rosell, J. Santos and J.J. Sanz-Cillero, Fingerprints of heavy scales in electroweak effective Lagrangians, JHEP 04 (2017) 012 [arXiv:1609.06659] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral Lagrangians for Massive Spin 1 Fields, Phys. Lett. B 223 (1989) 425 [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    A. Alboteanu, W. Kilian and J. Reuter, Resonances and Unitarity in Weak Boson Scattering at the LHC, JHEP 11 (2008) 010 [arXiv:0806.4145] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Possible new resonance from W L W L -hh interchannel coupling, Phys. Rev. Lett. 114 (2015) 221803 [arXiv:1408.1193] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    A. Dobado, F.-K. Guo and F.J. Llanes-Estrada, Production cross section estimates for strongly-interacting Electroweak Symmetry Breaking Sector resonances at particle colliders, Commun. Theor. Phys. 64 (2015) 701 [arXiv:1508.03544] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. [45]

    T. Corbett, O.J.P. É boli and M.C. Gonzalez-Garcia, Inverse amplitude method for the perturbative electroweak symmetry breaking sector: The singlet Higgs portal as a study case, Phys. Rev. D 93 (2016) 015005 [arXiv:1509.01585] [INSPIRE].

  46. [46]

    D. Buarque Franzosi and P. Ferrarese, Implications of Vector Boson Scattering Unitarity in Composite Higgs Models, Phys. Rev. D 96 (2017) 055037 [arXiv:1705.02787] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    T.N. Truong, Chiral Perturbation Theory and Final State Theorem, Phys. Rev. Lett. 61 (1988) 2526 [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    A. Dobado, M.J. Herrero and T.N. Truong, Unitarized Chiral Perturbation Theory for Elastic Pion-Pion Scattering, Phys. Lett. B 235 (1990) 134 [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    A. Dobado and J.R. Pelaez, A global fit of ππ and πK elastic scattering in ChPT with dispersion relations, Phys. Rev. D 47 (1993) 4883 [hep-ph/9301276] [INSPIRE].

  50. [50]

    T. Hannah, Unitarity, chiral perturbation theory and K l4 decays, Phys. Rev. D 51 (1995) 103 [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    A. Dobado, M.J. Herrero and T.N. Truong, Study of the Strongly Interacting Higgs Sector, Phys. Lett. B 235 (1990) 129 [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of Gauge Invariance from High-Energy Unitarity Bounds on the s Matrix, Phys. Rev. D 10 (1974) 1145 [Erratum ibid. D 11 (1975) 972] [INSPIRE].

  53. [53]

    C.E. Vayonakis, Born Helicity Amplitudes and Cross-Sections in Nonabelian Gauge Theories, Lett. Nuovo Cim. 17 (1976) 383 [INSPIRE].

    Article  Google Scholar 

  54. [54]

    B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    G.J. Gounaris, R. Kogerler and H. Neufeld, Relationship Between Longitudinally Polarized Vector Bosons and their Unphysical Scalar Partners, Phys. Rev. D 34 (1986) 3257 [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    S. Haywood et al., Electroweak physics, hep-ph/0003275 [INSPIRE].

  58. [58]

    K. Doroba et al., The W L W L Scattering at the LHC: Improving the Selection Criteria, Phys. Rev. D 86 (2012) 036011 [arXiv:1201.2768] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    M. Szleper, The Higgs boson and the physics of WW scattering before and after Higgs discovery, arXiv:1412.8367 [INSPIRE].

  60. [60]

    ATLAS collaboration, Measurements of W ± Z production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings, Phys. Rev. D 93 (2016) 092004 [arXiv:1603.02151] [INSPIRE].

  61. [61]

    M.J. Herrero and E. Ruiz Morales, The Electroweak chiral Lagrangian for the Standard Model with a heavy Higgs, Nucl. Phys. B 418 (1994) 431 [hep-ph/9308276] [INSPIRE].

  62. [62]

    M.J. Herrero and E. Ruiz Morales, Nondecoupling effects of the SM Higgs boson to one loop, Nucl. Phys. B 437 (1995) 319 [hep-ph/9411207] [INSPIRE].

  63. [63]

    A. Dobado and J.R. Peláez, On The Equivalence theorem in the chiral perturbation theory description of the symmetry breaking sector of the standard model, Nucl. Phys. B 425 (1994) 110 [Erratum ibid. B 434 (1995) 475] [hep-ph/9401202] [INSPIRE].

  64. [64]

    A. Dobado and J.R. Pelaez, The equivalence theorem for chiral lagrangians, Phys. Lett. B 329 (1994) 469 [Addendum ibid. B 335 (1994) 554] [hep-ph/9404239] [INSPIRE].

  65. [65]

    A. Dobado, J.R. Pelaez and M.T. Urdiales, Applicability constraints of the equivalence theorem, Phys. Rev. D 56 (1997) 7133 [hep-ph/9702206] [INSPIRE].

  66. [66]

    H.-J. He, Y.-P. Kuang and X.-y. Li, Proof of the equivalence theorem in the chiral Lagrangian formalism, Phys. Lett. B 329 (1994) 278 [hep-ph/9403283] [INSPIRE].

  67. [67]

    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

  68. [68]

    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

  69. [69]

    S. Dawson and G. Valencia, Heavy fermion effects on longitudinal gauge boson scattering, Phys. Lett. B 246 (1990) 156 [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    J.R. Pelaez, From controversy to precision on the sigma meson: a review on the status of the non-ordinary f 0(500) resonance, Phys. Rept. 658 (2016) 1 [arXiv:1510.00653] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, Unitarity, analyticity, dispersion relations and resonances in strongly interacting W L W L , Z L Z L and hh scattering, Phys. Rev. D 91 (2015) 075017 [arXiv:1502.04841] [INSPIRE].

  72. [72]

    S. Coleman, Dilatations, in Aspects of Symmetry: Selected Erice Lectures, pg. I-Vi, Cambridge University Press (1985).

  73. [73]

    E. Halyo, Technidilaton or Higgs?, Mod. Phys. Lett. A 8 (1993) 275 [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    W.D. Goldberger, B. Grinstein and W. Skiba, Distinguishing the Higgs boson from the dilaton at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802 [arXiv:0708.1463] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    G. D’Ambrosio and D. Espriu, Vector meson decays from the extended chiral quark model, Phys. Lett. B 638 (2006) 487 [hep-ph/0602008] [INSPIRE].

  76. [76]

    M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev. 123 (1961) 1053 [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].

  78. [78]

    A. Barachetti, L. Rossi and A. Szeberenyi, Final Project Report: Deliverable D1.14, CERN-ACC-2016-0007 (2016).

  79. [79]

    CMS collaboration, Search for massive resonances in dijet systems containing jets tagged as W or Z boson decays in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 08 (2014) 173 [arXiv:1405.1994] [INSPIRE].

  80. [80]

    ATLAS collaboration, Identification of boosted, hadronically-decaying W and Z bosons in \( \sqrt{s}=13 \) TeV Monte Carlo Simulations for ATLAS, ATL-PHYS-PUB-2015-033 (2015).

  81. [81]

    ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].

  82. [82]

    J.J. Heinrich, Reconstruction of boosted W ± and Z 0 bosons from fat jets, CERN-THESIS-2014-152, 12 September 2014.

  83. [83]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Garcia-Garcia.

Additional information

ArXiv ePrint: 1707.04580

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delgado, R.L., Dobado, A., Espriu, D. et al. Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis. J. High Energ. Phys. 2017, 98 (2017). https://doi.org/10.1007/JHEP11(2017)098

Download citation

Keywords

  • Beyond Standard Model
  • Chiral Lagrangians
  • Effective Field Theories
  • Higgs Physics