Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Universality of next-to-leading power threshold effects for colourless final states in hadronic collisions

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 November 2017
  • Volume 2017, article number 57, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Universality of next-to-leading power threshold effects for colourless final states in hadronic collisions
Download PDF
  • V. Del Duca1,2,
  • E. Laenen3,4,5,
  • L. Magnea6,
  • L. Vernazza7 &
  • …
  • C.D. White8 
  • 454 Accesses

  • 55 Citations

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We consider the production of an arbitrary number of colour-singlet particles near partonic threshold, and show that next-to-leading order cross sections for this class of processes have a simple universal form at next-to-leading power (NLP) in the energy of the emitted gluon radiation. Our analysis relies on a recently derived factorisation formula for NLP threshold effects at amplitude level, and therefore applies both if the leading-order process is tree-level and if it is loop-induced. It holds for differential distributions as well. The results can furthermore be seen as applications of recently derived next-to-soft theorems for gauge theory amplitudes. We use our universal expression to re-derive known results for the production of up to three Higgs bosons at NLO in the large top mass limit, and for the hadro-production of a pair of electroweak gauge bosons. Finally, we present new analytic results for Higgs boson pair production at NLO and NLP, with exact top-mass dependence.

Article PDF

Download to read the full article text

Similar content being viewed by others

A factorization approach to next-to-leading-power threshold logarithms

Article Open access 03 June 2015

Soft gluon resummation for associated \( \mathrm{t}\overline{\mathrm{t}}\mathrm{H} \) production at the LHC

Article Open access 11 March 2016

The parton-level structure of Higgs decays to hadrons at N3LO

Article Open access 27 June 2023
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in 9th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2015) Les Houches, France, June 1-19, 2015, arXiv:1605.04692 [INSPIRE].

  2. G.F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard Processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  4. G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett. B 313 (1993) 433 [INSPIRE].

    Article  ADS  Google Scholar 

  5. G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].

  6. H. Contopanagos, E. Laenen and G.F. Sterman, Sudakov factorization and resummation, Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [INSPIRE].

  7. S. Forte and G. Ridolfi, Renormalization group approach to soft gluon resummation, Nucl. Phys. B 650 (2003) 229 [hep-ph/0209154] [INSPIRE].

  8. T.O. Eynck, E. Laenen and L. Magnea, Exponentiation of the Drell-Yan cross-section near partonic threshold in the DIS and MS-bar schemes, JHEP 06 (2003) 057 [hep-ph/0305179] [INSPIRE].

  9. A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

  10. T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].

  11. G. Luisoni and S. Marzani, QCD resummation for hadronic final states, J. Phys. G 42 (2015) 103101 [arXiv:1505.04084] [INSPIRE].

  12. N. Kidonakis, Soft-gluon resummations and NNNLO expansions, PoS(EPS-HEP 2013)432 [arXiv:1309.1442] [INSPIRE].

  13. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

  14. C. Anastasiou, C. Duhr, F. Dulat and B. Mistlberger, Soft triple-real radiation for Higgs production at N3LO, JHEP 07 (2013) 003 [arXiv:1302.4379] [INSPIRE].

    Article  ADS  Google Scholar 

  15. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Real-virtual contributions to the inclusive Higgs cross-section at N 3 LO, JHEP 12 (2013) 088 [arXiv:1311.1425] [INSPIRE].

    Article  ADS  Google Scholar 

  16. C. Anastasiou et al., Higgs boson gluon-fusion production at threshold in N 3 LO QCD, Phys. Lett. B 737 (2014) 325 [arXiv:1403.4616] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C. Anastasiou et al., Higgs Boson GluonFfusion Production Beyond Threshold in N 3 LO QCD, JHEP 03 (2015) 091 [arXiv:1411.3584] [INSPIRE].

    Article  Google Scholar 

  18. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].

    Article  ADS  Google Scholar 

  19. E. Laenen, L. Magnea and G. Stavenga, On next-to-eikonal corrections to threshold resummation for the Drell-Yan and DIS cross sections, Phys. Lett. B 669 (2008) 173 [arXiv:0807.4412] [INSPIRE].

    Article  ADS  Google Scholar 

  20. E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [INSPIRE].

    Article  ADS  Google Scholar 

  21. E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. D. Bonocore, E. Laenen, L. Magnea, L. Vernazza and C.D. White, The method of regions and next-to-soft corrections in Drell-Yan production, Phys. Lett. B 742 (2015) 375 [arXiv:1410.6406] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. D. Bonocore, E. Laenen, L. Magnea, S. Melville, L. Vernazza and C.D. White, A factorization approach to next-to-leading-power threshold logarithms, JHEP 06 (2015) 008 [arXiv:1503.05156] [INSPIRE].

    Article  ADS  Google Scholar 

  24. D. Bonocore, E. Laenen, L. Magnea, L. Vernazza and C.D. White, Non-abelian factorisation for next-to-leading-power threshold logarithms, JHEP 12 (2016) 121 [arXiv:1610.06842] [INSPIRE].

    Article  ADS  Google Scholar 

  25. S. Moch and A. Vogt, Threshold Resummation of the Structure Function F(L), JHEP 04 (2009) 081 [arXiv:0902.2342] [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Moch and A. Vogt, On non-singlet physical evolution kernels and large-x coefficient functions in perturbative QCD, JHEP 11 (2009) 099 [arXiv:0909.2124] [INSPIRE].

    Article  ADS  Google Scholar 

  27. G. Soar, S. Moch, J.A.M. Vermaseren and A. Vogt, On Higgs-exchange DIS, physical evolution kernels and fourth-order splitting functions at large x, Nucl. Phys. B 832 (2010) 152 [arXiv:0912.0369] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. A.A. Almasy, G. Soar and A. Vogt, Generalized double-logarithmic large-x resummation in inclusive deep-inelastic scattering, JHEP 03 (2011) 030 [arXiv:1012.3352] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. N.A. Lo Presti, A.A. Almasy and A. Vogt, Leading large-x logarithms of the quark-gluon contributions to inclusive Higgs-boson and lepton-pair production, Phys. Lett. B 737 (2014) 120 [arXiv:1407.1553] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. D. de Florian, J. Mazzitelli, S. Moch and A. Vogt, Approximate N 3 LO Higgs-boson production cross section using physical-kernel constraints, JHEP 10 (2014) 176 [arXiv:1408.6277] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Grunberg and V. Ravindran, On threshold resummation beyond leading 1-x order, JHEP 10 (2009) 055 [arXiv:0902.2702] [INSPIRE].

    Article  ADS  Google Scholar 

  32. G. Grunberg, Large-x structure of physical evolution kernels in Deep Inelastic Scattering, Phys. Lett. B 687 (2010) 405 [arXiv:0911.4471] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A.J. Larkoski, D. Neill and I.W. Stewart, Soft Theorems from Effective Field Theory, JHEP 06 (2015) 077 [arXiv:1412.3108] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. D.W. Kolodrubetz, I. Moult and I.W. Stewart, Building Blocks for Subleading Helicity Operators, JHEP 05 (2016) 139 [arXiv:1601.02607] [INSPIRE].

    Article  ADS  Google Scholar 

  35. I. Moult, L. Rothen, I.W. Stewart, F.J. Tackmann and H.X. Zhu, Subleading Power Corrections for N-Jettiness Subtractions, Phys. Rev. D 95 (2017) 074023 [arXiv:1612.00450] [INSPIRE].

    ADS  Google Scholar 

  36. R. Boughezal, X. Liu and F. Petriello, Power Corrections in the N-jettiness Subtraction Scheme, JHEP 03 (2017) 160 [arXiv:1612.02911] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. I. Moult, I.W. Stewart and G. Vita, A subleading operator basis and matching for gg → H, JHEP 07 (2017) 067 [arXiv:1703.03408] [INSPIRE].

    Article  ADS  Google Scholar 

  38. I. Feige, D.W. Kolodrubetz, I. Moult and I.W. Stewart, A Complete Basis of Helicity Operators for Subleading Factorization, arXiv:1703.03411 [INSPIRE].

  39. H. Gervais, Soft Photon Theorem for High Energy Amplitudes in Yukawa and Scalar Theories, Phys. Rev. D 95 (2017) 125009 [arXiv:1704.00806] [INSPIRE].

    ADS  Google Scholar 

  40. H. Gervais, Soft Graviton Emission at High and Low Energies in Yukawa and Scalar Theories, Phys. Rev. D 96 (2017) 065007 [arXiv:1706.03453] [INSPIRE].

  41. F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].

    Article  ADS  Google Scholar 

  43. V. Del Duca, High-energy Bremsstrahlung Theorems for Soft Photons, Nucl. Phys. B 345 (1990) 369 [INSPIRE].

  44. E. Casali, Soft sub-leading divergences in Yang-Mills amplitudes, JHEP 08 (2014) 077 [arXiv:1404.5551] [INSPIRE].

    Article  ADS  Google Scholar 

  45. C.D. White, Factorization Properties of Soft Graviton Amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].

  47. S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].

  48. D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett. 111 (2013) 201801 [arXiv:1309.6594] [INSPIRE].

    Article  ADS  Google Scholar 

  49. D. de Florian et al., Differential Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, JHEP 09 (2016) 151 [arXiv:1606.09519] [INSPIRE].

    Article  ADS  Google Scholar 

  50. D. de Florian and J. Mazzitelli, Two-loop corrections to the triple Higgs boson production cross section, JHEP 02 (2017) 107 [arXiv:1610.05012] [INSPIRE].

    Article  ADS  Google Scholar 

  51. E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].

    Article  ADS  Google Scholar 

  52. T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].

  53. S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].

    Article  ADS  Google Scholar 

  54. R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].

    Article  ADS  Google Scholar 

  55. D.Y. Shao, C.S. Li, H.T. Li and J. Wang, Threshold resummation effects in Higgs boson pair production at the LHC, JHEP 07 (2013) 169 [arXiv:1301.1245] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, Nucl. Phys. B 875 (2013) 1 [arXiv:1305.7340] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. T. Plehn and M. Rauch, The quartic Higgs coupling at hadron colliders, Phys. Rev. D 72 (2005) 053008 [hep-ph/0507321] [INSPIRE].

  58. F. Maltoni, E. Vryonidou and M. Zaro, Top-quark mass effects in double and triple Higgs production in gluon-gluon fusion at NLO, JHEP 11 (2014) 079 [arXiv:1408.6542] [INSPIRE].

    Article  ADS  Google Scholar 

  59. B. Hespel, F. Maltoni and E. Vryonidou, Higgs and Z boson associated production via gluon fusion in the SM and the 2HDM, JHEP 06 (2015) 065 [arXiv:1503.01656] [INSPIRE].

    Article  ADS  Google Scholar 

  60. R. Gastmans and T.T. Wu, The ubiquitous photon: Helicity method for QED and QCD, International series of monographs on physics, 80, Clarendon, Oxford, U.K. (1990).

  61. S. Frixione, A next-to-leading order calculation of the cross-section for the production of W + W − pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].

    Article  ADS  Google Scholar 

  62. L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

    Article  ADS  Google Scholar 

  63. G. Grammer Jr. and D.R. Yennie, Improved treatment for the infrared divergence problem in quantum electrodynamics, Phys. Rev. D 8 (1973) 4332 [INSPIRE].

    ADS  Google Scholar 

  64. C.D. White, Diagrammatic insights into next-to-soft corrections, Phys. Lett. B 737 (2014) 216 [arXiv:1406.7184] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  65. R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α 2 s correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [INSPIRE].

  66. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  67. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

  68. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

  69. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].

  70. M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

  71. R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].

    Article  ADS  Google Scholar 

  72. A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  73. B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].

    Article  ADS  Google Scholar 

  74. A. Lazopoulos, K. Melnikov and F. Petriello, QCD corrections to tri-boson production, Phys. Rev. D 76 (2007) 014001 [hep-ph/0703273] [INSPIRE].

  75. F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev. D 78 (2008) 094012 [arXiv:0809.0790] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. ETH Zurich, Institut fur theoretische Physik, Wolfgang-Paulistr. 27, 8093, Zurich, Switzerland

    V. Del Duca

  2. INFN Laboratori Nazionali di Frascati, 00044, Frascati (Roma), Italy

    V. Del Duca

  3. Nikhef, Science Park 105, NL-1098 XG, Amsterdam, The Netherlands

    E. Laenen

  4. ITFA, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands

    E. Laenen

  5. ITF, Utrecht University, Leuvenlaan 4, Utrecht, The Netherlands

    E. Laenen

  6. Dipartimento di Fisica and Arnold-Regge Center, Università di Torino, and INFN, Sezione di Torino, Via P. Giuria 1, I-10125, Torino, Italy

    L. Magnea

  7. Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3JZ, Scotland, U.K.

    L. Vernazza

  8. Centre for Research in String Theory, School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London, E1 4NS, U.K.

    C.D. White

Authors
  1. V. Del Duca
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. E. Laenen
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. L. Magnea
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. L. Vernazza
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. C.D. White
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to C.D. White.

Additional information

ArXiv ePrint: 1706.04018

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Duca, V., Laenen, E., Magnea, L. et al. Universality of next-to-leading power threshold effects for colourless final states in hadronic collisions. J. High Energ. Phys. 2017, 57 (2017). https://doi.org/10.1007/JHEP11(2017)057

Download citation

  • Received: 05 July 2017

  • Accepted: 31 October 2017

  • Published: 09 November 2017

  • DOI: https://doi.org/10.1007/JHEP11(2017)057

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature