Skip to main content

Chaos, complexity, and random matrices

A preprint version of the article is available at arXiv.

Abstract

Chaos and complexity entail an entropic and computational obstruction to describing a system, and thus are intrinsically difficult to characterize. In this paper, we consider time evolution by Gaussian Unitary Ensemble (GUE) Hamiltonians and analytically compute out-of-time-ordered correlation functions (OTOCs) and frame potentials to quantify scrambling, Haar-randomness, and circuit complexity. While our random matrix analysis gives a qualitatively correct prediction of the late-time behavior of chaotic systems, we find unphysical behavior at early times including an \( \mathcal{O}(1) \) scrambling time and the apparent breakdown of spatial and temporal locality. The salient feature of GUE Hamiltonians which gives us computational traction is the Haar-invariance of the ensemble, meaning that the ensemble-averaged dynamics look the same in any basis. Motivated by this property of the GUE, we introduce k-invariance as a precise definition of what it means for the dynamics of a quantum system to be described by random matrix theory. We envision that the dynamical onset of approximate k-invariance will be a useful tool for capturing the transition from early-time chaos, as seen by OTOCs, to late-time chaos, as seen by random matrix theory.

References

  1. P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    ADS  Article  Google Scholar 

  3. N. Lashkari, D. Stanford, M. Hastings, T. Osborne and P. Hayden, Towards the Fast Scrambling Conjecture, JHEP 04 (2013) 022 [arXiv:1111.6580] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP 05 (2015) 132 [arXiv:1412.6087] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. A. Kitaev, Hidden correlations in the hawking radiation and thermal noise, talks given at The Fundamental Physics Prize Symposium, 10 November 2014, and at The KITP, 12 February 2015.

  8. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  9. A. Kitaev, A simple model of quantum holography, talks given at The KITP, 7 April 2015 and 27 May 2015.

  10. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. J.S. Cotler et al., Black Holes and Random Matrices, JHEP 05 (2017) 118 [arXiv:1611.04650] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. Math. 62 (1955) 548.

    MathSciNet  Article  MATH  Google Scholar 

  13. F.J. Dyson, Statistical theory of the energy levels of complex systems. I, J. Math. Phys. 3 (1962) 140 [INSPIRE].

  14. O. Bohigas, M.J. Giannoni and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984) 1 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP 02 (2016) 004 [arXiv:1511.04021] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. D.A. Roberts and B. Yoshida, Chaos and complexity by design, JHEP 04 (2017) 121 [arXiv:1610.04903] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett. 115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].

    ADS  Article  Google Scholar 

  19. A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3 /CFT 2 , JHEP 05 (2016) 109 [arXiv:1603.08925] [INSPIRE].

    ADS  Article  Google Scholar 

  20. A.L. Fitzpatrick and J. Kaplan, On the Late-Time Behavior of Virasoro Blocks and a Classification of Semiclassical Saddles, JHEP 04 (2017) 072 [arXiv:1609.07153] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. E. Dyer and G. Gur-Ari, 2D CFT Partition Functions at Late Times, JHEP 08 (2017) 075 [arXiv:1611.04592] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. V. Balasubramanian, B. Craps, B. Czech and G. Sárosi, Echoes of chaos from string theory black holes, JHEP 03 (2017) 154 [arXiv:1612.04334] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. Y.-Z. You, A.W.W. Ludwig and C. Xu, Sachdev-Ye-Kitaev Model and Thermalization on the Boundary of Many-Body Localized Fermionic Symmetry Protected Topological States, Phys. Rev. B 95 (2017) 115150 [arXiv:1602.06964] [INSPIRE].

  24. A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE].

    ADS  Google Scholar 

  25. M. Mehta, Random Matrices, Pure and Applied Mathematics, Elsevier Science (2004).

  26. T. Tao, Topics in Random Matrix Theory, Graduate studies in mathematics, American Mathematical Society (2012).

  27. T. Guhr, A. Müller-Groeling and H.A. Weidenmuller, Random matrix theories in quantum physics: Common concepts, Phys. Rept. 299 (1998) 189 [cond-mat/9707301] [INSPIRE].

  28. A.R. Brown and L. Susskind, The Second Law of Quantum Complexity, arXiv:1701.01107 [INSPIRE].

  29. A. del Campo, J. Molina-Vilaplana and J. Sonner, Scrambling the spectral form factor: unitarity constraints and exact results, Phys. Rev. D 95 (2017) 126008 [arXiv:1702.04350] [INSPIRE].

  30. E. Brézin and S. Hikami, Spectral form factor in a random matrix theory, Phys. Rev. E 55 (1997) 4067 [cond-mat/9608116].

  31. L. Erdős and D. Schröder, Phase Transition in the Density of States of Quantum Spin Glasses, Math. Phys. Anal. Geom. 17 (2014) 9164 [arXiv:1407.1552].

    MathSciNet  MATH  Google Scholar 

  32. J.S. Cotler, G.R. Penington and D.H. Ranard, Locality from the Spectrum, arXiv:1702.06142 [INSPIRE].

  33. A.I. Larkin and Y.N. Ovchinnikov, Quasiclassical Method in the Theory of Superconductivity, JETP 28 (1969) 1200.

    ADS  Google Scholar 

  34. D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. F.G.S.L. Brandão, P. Ćwiklinski, M. Horodecki, P. Horodecki, J.K. Korbicz and M. Mozrzymas, Convergence to equilibrium under a random hamiltonian, Phys. Rev. E 86 (2012) 031101 [arXiv:1108.2985].

  36. S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].

  37. W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].

  38. D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].

  39. Z.-W. Liu, S. Lloyd, E.Y. Zhu and H. Zhu, Entropic scrambling complexities, arXiv:1703.08104 [INSPIRE].

  40. C. Dankert, R. Cleve, J. Emerson and E. Livine, Exact and approximate unitary 2-designs and their application to fidelity estimation, Phys. Rev. A 80 (2009) 012304 [quant-ph/0606161].

  41. F.G.S.L. Brandão, A.W. Harrow and M. Horodecki, Local Random Quantum Circuits are Approximate Polynomial-Designs, Commun. Math. Phys. 346 (2016) 397 [arXiv:1208.0692].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  44. A.J. Scott, Optimizing quantum process tomography with unitary 2-designs, J. Phys. A 41 (2008) 055308 [arXiv:0711.1017].

  45. B. Collins, Moments and cumulants of polynomial random variables on unitarygroups, the itzykson-zuber integral, and free probability, Int. Math. Res. Not. 2003 (2003) 953 [math-ph/0205010].

  46. B. Collins and P. Śniady, Integration with Respect to the Haar Measure on Unitary, Orthogonal and Symplectic Group, Commun. Math. Phys. 264 (2006) 773 [math-ph/0402073].

  47. D. Weingarten, Asymptotic Behavior of Group Integrals in the Limit of Infinite Rank, J. Math. Phys. 19 (1978) 999 [INSPIRE].

  48. P. Diaconis and M. Shahshahani, On the eigenvalues of random matrices, J. Appl. Prob. 31 (1994) 49.

    MathSciNet  Article  MATH  Google Scholar 

  49. S. Bravyi, M.B. Hastings and F. Verstraete, Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order, Phys. Rev. Lett. 97 (2006) 050401 [quant-ph/0603121].

  50. L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys. 64 (2016) 44 [arXiv:1403.5695] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Complexity, action and black holes, Phys. Rev. D 93 (2016) 086006 [arXiv:1512.04993] [INSPIRE].

  52. X. Chen, Z.C. Gu and X.G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order, Phys. Rev. B 82 (2010) 155138 [arXiv:1004.3835] [INSPIRE].

    ADS  Article  Google Scholar 

  53. D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].

  54. Z.-C. Yang, A. Hamma, S.M. Giampaolo, E.R. Mucciolo and C. Chamon, Entanglement complexity in quantum many-body dynamics, thermalization, and localization, Phys. Rev. B 96 (2017) 020408 [arXiv:1703.03420].

  55. E. Brézin and S. Hikami, Random Matrix Theory with an External Source, Springer Briefs in Mathematical Physics, Springer Singapore (2017).

  56. Y. Huang, F.G. S.L. Brandao and Y.-L. Zhang, Finite-size scaling of out-of-time-ordered correlators at late times, arXiv:1705.07597 [INSPIRE].

  57. M.V. Berry, Regular and irregular semiclassical wavefunctions, J. Phys. A 10 (1977) 2083.

    ADS  MathSciNet  MATH  Google Scholar 

  58. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50 (1994) 888 [cond-mat/9403051].

  59. L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65 (2016) 239 [arXiv:1509.06411] [INSPIRE].

    ADS  Article  Google Scholar 

  60. W.W. Ho and D. Radicevic, The Ergodicity Landscape of Quantum Theories, arXiv:1701.08777 [INSPIRE].

  61. J. Sonner and M. Vielma, Eigenstate thermalization in the Sachdev-Ye-Kitaev model, arXiv:1707.08013 [INSPIRE].

  62. J.M. Magan, Random free fermions: An analytical example of eigenstate thermalization, Phys. Rev. Lett. 116 (2016) 030401 [arXiv:1508.05339] [INSPIRE].

  63. H. Gharibyan, M. Hanada, S. Shenker and M. Tezuka, to appear.

  64. D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  65. W. Brown and O. Fawzi, Decoupling with random quantum circuits, Commun. Math. Phys. 340 (2015) 867 [arXiv:1307.0632].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  66. R.A. Low, Pseudo-randomness and Learning in Quantum Computation, Ph.D. Thesis (2010) [arXiv:1006.5227].

  67. E. Brézin and S. Hikami, Extension of level-spacing universality, Phys. Rev. E 56 (1997) 264 [cond-mat/9702213].

  68. R.E. Prange, The spectral form factor is not self-averaging, Phys. Rev. Lett. 78 (1997) 2280 [chao-dyn/9606010].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Hunter-Jones.

Additional information

ArXiv ePrint: 1706.05400

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cotler, J., Hunter-Jones, N., Liu, J. et al. Chaos, complexity, and random matrices. J. High Energ. Phys. 2017, 48 (2017). https://doi.org/10.1007/JHEP11(2017)048

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2017)048

Keywords

  • AdS-CFT Correspondence
  • Black Holes
  • Matrix Models
  • Random Systems