Skip to main content

Aspects of Galileon non-renormalization

A preprint version of the article is available at arXiv.

Abstract

We discuss non-renormalization theorems applying to galileon field theories and their generalizations. Galileon theories are similar in many respects to other derivatively coupled effective field theories, including general relativity and P (X) theories. In particular, these other theories also enjoy versions of non-renormalization theorems that protect certain operators against corrections from self-loops. However, we argue that the galileons are distinguished by the fact that they are not renormalized even by loops of other heavy fields whose couplings respect the galileon symmetry.

References

  1. A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. G.R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP 09 (2003) 029 [hep-th/0303116] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].

    Article  Google Scholar 

  5. G. Goon, K. Hinterbichler and M. Trodden, Symmetries for Galileons and DBI scalars on curved space, JCAP 07 (2011) 017 [arXiv:1103.5745] [INSPIRE].

    ADS  Article  Google Scholar 

  6. G. Goon, K. Hinterbichler and M. Trodden, A new class of effective field theories from embedded branes, Phys. Rev. Lett. 106 (2011) 231102 [arXiv:1103.6029] [INSPIRE].

    ADS  Article  Google Scholar 

  7. G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].

    ADS  Article  Google Scholar 

  8. C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].

    ADS  Google Scholar 

  9. C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    ADS  Article  Google Scholar 

  10. A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393 [INSPIRE].

    ADS  Article  Google Scholar 

  11. E. Babichev and C. Deffayet, An introduction to the Vainshtein mechanism, Class. Quant. Grav. 30 (2013) 184001 [arXiv:1304.7240] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. A. Nicolis and R. Rattazzi, Classical and quantum consistency of the DGP model, JHEP 06 (2004) 059 [hep-th/0404159] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. K. Kampf and J. Novotny, Unification of Galileon dualities, JHEP 10 (2014) 006 [arXiv:1403.6813] [INSPIRE].

    ADS  Article  Google Scholar 

  14. C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].

    ADS  Article  Google Scholar 

  15. F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-shell recursion relations for effective field theories, Phys. Rev. Lett. 116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].

    ADS  Article  Google Scholar 

  17. K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. G.L. Goon, K. Hinterbichler and M. Trodden, Stability and superluminality of spherical DBI Galileon solutions, Phys. Rev. D 83 (2011) 085015 [arXiv:1008.4580] [INSPIRE].

    ADS  Google Scholar 

  19. L. Berezhiani, G. Chkareuli and G. Gabadadze, Restricted Galileons, Phys. Rev. D 88 (2013) 124020 [arXiv:1302.0549] [INSPIRE].

    ADS  Google Scholar 

  20. G. Gabadadze, R. Kimura and D. Pirtskhalava, Vainshtein solutions without superluminal modes, Phys. Rev. D 91 (2015) 124024 [arXiv:1412.8751] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  21. A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. B. Bellazzini, Softness and amplitudespositivity for spinning particles, arXiv:1605.06111 [INSPIRE].

  23. C. Cheung and G.N. Remmen, Positive signs in massive gravity, JHEP 04 (2016) 002 [arXiv:1601.04068] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-completion by classicalization, JHEP 08 (2011) 108 [arXiv:1010.1415] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  25. G. Dvali and D. Pirtskhalava, Dynamics of unitarization by classicalization, Phys. Lett. B 699 (2011) 78 [arXiv:1011.0114] [INSPIRE].

    ADS  Article  Google Scholar 

  26. A. Codello, N. Tetradis and O. Zanusso, The renormalization of fluctuating branes, the Galileon and asymptotic safety, JHEP 04 (2013) 036 [arXiv:1212.4073] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. N. Brouzakis, A. Codello, N. Tetradis and O. Zanusso, Quantum corrections in Galileon theories, Phys. Rev. D 89 (2014) 125017 [arXiv:1310.0187] [INSPIRE].

    ADS  Google Scholar 

  28. P. Cooper, S. Dubovsky and A. Mohsen, Ultraviolet complete Lorentz-invariant theory with superluminal signal propagation, Phys. Rev. D 89 (2014) 084044 [arXiv:1312.2021] [INSPIRE].

    ADS  Google Scholar 

  29. L. Keltner and A.J. Tolley, UV properties of Galileons: spectral densities, arXiv:1502.05706 [INSPIRE].

  30. K. Hinterbichler, M. Trodden and D. Wesley, Multi-field Galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].

    ADS  Google Scholar 

  31. E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [Erratum ibid. 281 (2000) 409] [INSPIRE].

  33. E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. P. Creminelli, A. Nicolis and E. Trincherini, Galilean genesis: an alternative to inflation, JCAP 11 (2010) 021 [arXiv:1007.0027] [INSPIRE].

    ADS  Article  Google Scholar 

  35. M. Ostrogradsky, Mémoires sur les équations différentielles, relatives au problème des isopérimètres (in French), Mem. Ac. St. Petersbourg VI 4 (1850) 385 [INSPIRE].

  36. R.P. Woodard, Avoiding dark energy with 1/R modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].

  37. R.P. Woodard, Ostrogradskys theorem on Hamiltonian instability, Scholarpedia 10 (2015) 32243 [arXiv:1506.02210] [INSPIRE].

    Article  Google Scholar 

  38. C.P. Burgess and M. Williams, Who you gonna call? Runaway ghosts, higher derivatives and time-dependence in EFTs, JHEP 08 (2014) 074 [arXiv:1404.2236] [INSPIRE].

    ADS  Article  Google Scholar 

  39. J.Z. Simon, Higher derivative Lagrangians, nonlocality, problems and solutions, Phys. Rev. D 41 (1990) 3720 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  40. X. Jaen, J. Llosa and A. Molina, A reduction of order two for infinite order Lagrangians, Phys. Rev. D 34 (1986) 2302 [INSPIRE].

    ADS  Google Scholar 

  41. S. Endlich, K. Hinterbichler, L. Hui, A. Nicolis and J. Wang, Derricks theorem beyond a potential, JHEP 05 (2011) 073 [arXiv:1002.4873] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. L.F. Abbott, Introduction to the background field method, Acta Phys. Polon. B 13 (1982) 33 [INSPIRE].

    MathSciNet  Google Scholar 

  43. C. de Rham, G. Gabadadze, L. Heisenberg and D. Pirtskhalava, Nonrenormalization and naturalness in a class of scalar-tensor theories, Phys. Rev. D 87 (2013) 085017 [arXiv:1212.4128] [INSPIRE].

    ADS  Google Scholar 

  44. C. de Rham, L. Heisenberg and R.H. Ribeiro, Quantum corrections in massive gravity, Phys. Rev. D 88 (2013) 084058 [arXiv:1307.7169] [INSPIRE].

    ADS  Google Scholar 

  45. C.P. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 329 [hep-th/0701053] [INSPIRE].

    ADS  Article  Google Scholar 

  46. B.S. DeWitt, Quantum theory of gravity. 3. Applications of the covariant theory, Phys. Rev. 162 (1967) 1239 [INSPIRE].

  47. M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266 (1986) 709 [INSPIRE].

    ADS  Article  Google Scholar 

  48. B.S. DeWitt, The space-time approach to quantum field theory, North-Holland, Amsterdam The Netherlands (1984) [INSPIRE].

  49. G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. H. Poincare Phys. Theor. A 20 (1974) 69 [INSPIRE].

  50. G. ’t Hooft, An algorithm for the poles at dimension four in the dimensional regularization procedure, Nucl. Phys. B 62 (1973) 444 [INSPIRE].

  51. C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075] [INSPIRE].

  52. J. Garriga and V.F. Mukhanov, Perturbations in k-inflation, Phys. Lett. B 458 (1999) 219 [hep-th/9904176] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  53. T. Chiba, T. Okabe and M. Yamaguchi, Kinetically driven quintessence, Phys. Rev. D 62 (2000) 023511 [astro-ph/9912463] [INSPIRE].

  54. C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett. 85 (2000) 4438 [astro-ph/0004134] [INSPIRE].

  55. C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, Essentials of k-essence, Phys. Rev. D 63 (2001) 103510 [astro-ph/0006373] [INSPIRE].

  56. N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP 05 (2004) 074 [hep-th/0312099] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  57. R.G. Leigh, Dirac-Born-Infeld action from Dirichlet σ-model, Mod. Phys. Lett. A 4 (1989) 2767 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter, Phys. Rev. D 66 (2002) 021301 [hep-th/0204150] [INSPIRE].

    ADS  Google Scholar 

  59. E. Silverstein and D. Tong, Scalar speed limits and cosmology: acceleration from D-cceleration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  60. M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].

    ADS  Google Scholar 

  61. X. Chen, Inflation from warped space, JHEP 08 (2005) 045 [hep-th/0501184] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. M. Greiter, F. Wilczek and E. Witten, Hydrodynamic relations in superconductivity, Mod. Phys. Lett. B 3 (1989) 903 [INSPIRE].

    ADS  Article  Google Scholar 

  63. D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199 [INSPIRE].

  64. S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  65. S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev. D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].

    ADS  Google Scholar 

  66. D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: unitary Fermi gas, Annals Phys. 321 (2006) 197 [cond-mat/0509786] [INSPIRE].

  67. L. Berezhiani and J. Khoury, Theory of dark matter superfluidity, Phys. Rev. D 92 (2015) 103510 [arXiv:1507.01019] [INSPIRE].

    ADS  Google Scholar 

  68. C. de Rham and R.H. Ribeiro, Riding on irrelevant operators, JCAP 11 (2014) 016 [arXiv:1405.5213] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  69. S. Bellucci, E. Ivanov and S. Krivonos, AdS/CFT equivalence transformation, Phys. Rev. D 66 (2002) 086001 [Erratum ibid. D 67 (2003) 049901] [hep-th/0206126] [INSPIRE].

  70. H. Elvang, D.Z. Freedman, L.-Y. Hung, M. Kiermaier, R.C. Myers and S. Theisen, On renormalization group flows and the a-theorem in 6d, JHEP 10 (2012) 011 [arXiv:1205.3994] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  71. P. Creminelli, M. Serone and E. Trincherini, Non-linear representations of the conformal group and mapping of Galileons, JHEP 10 (2013) 040 [arXiv:1306.2946] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  72. D.V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra 4 (1973) 3 [INSPIRE].

    MathSciNet  Google Scholar 

  73. R. Sundrum, Gravitys scalar cousin, hep-th/0312212 [INSPIRE].

  74. V.A. Rubakov, Harrison-Zeldovich spectrum from conformal invariance, JCAP 09 (2009) 030 [arXiv:0906.3693] [INSPIRE].

    ADS  Article  Google Scholar 

  75. K. Hinterbichler and J. Khoury, The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry, JCAP 04 (2012) 023 [arXiv:1106.1428] [INSPIRE].

    ADS  Article  Google Scholar 

  76. K. Hinterbichler, A. Joyce and J. Khoury, Non-linear realizations of conformal symmetry and effective field theory for the pseudo-conformal universe, JCAP 06 (2012) 043 [arXiv:1202.6056] [INSPIRE].

    ADS  Article  Google Scholar 

  77. Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  78. Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP 07 (2012) 069 [arXiv:1112.4538] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  79. J.S.R. Chisholm, Change of variables in quantum field theories, Nucl. Phys. 26 (1961) 469 [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  80. S. Kamefuchi, L. O’Raifeartaigh and A. Salam, Change of variables and equivalence theorems in quantum field theories, Nucl. Phys. 28 (1961) 529 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  81. C.P. Burgess and D. London, Uses and abuses of effective Lagrangians, Phys. Rev. D 48 (1993) 4337 [hep-ph/9203216] [INSPIRE].

  82. A.V. Manohar, Effective field theories, Lect. Notes Phys. 479 (1997) 311 [hep-ph/9606222] [INSPIRE].

  83. I.G. Avramidi, Heat kernel approach in quantum field theory, Nucl. Phys. Proc. Suppl. 104 (2002) 3 [math-ph/0107018] [INSPIRE].

  84. D.V. Vassilevich, Heat kernel expansion: users manual, Phys. Rept. 388 (2003) 279 [hep-th/0306138] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  85. H. Georgi, Weak interactions, http://www.people.fas.harvard.edu/∼hgeorgi/weak.pdf.

  86. L. Heisenberg, Quantum corrections in Galileons from matter loops, Phys. Rev. D 90 (2014) 064005 [arXiv:1408.0267] [INSPIRE].

    ADS  Google Scholar 

  87. N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge U.K. (1984) [INSPIRE.].

  88. I.L. Shapiro and J. Solà, On the scaling behavior of the cosmological constant and the possible existence of new forces and new light degrees of freedom, Phys. Lett. B 475 (2000) 236 [hep-ph/9910462] [INSPIRE].

  89. J. Martin, Everything you always wanted to know about the cosmological constant problem (but were afraid to ask), Comptes Rendus Physique 13 (2012) 566 [arXiv:1205.3365] [INSPIRE].

    ADS  Article  Google Scholar 

  90. D. Pirtskhalava, L. Santoni, E. Trincherini and F. Vernizzi, Weakly broken Galileon symmetry, JCAP 09 (2015) 007 [arXiv:1505.00007] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  91. P. Gratia, W. Hu, A. Joyce and R.H. Ribeiro, Double screening, JCAP 06 (2016) 033 [arXiv:1604.00395] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  92. C. Burrage, C. de Rham, D. Seery and A.J. Tolley, Galileon inflation, JCAP 01 (2011) 014 [arXiv:1009.2497] [INSPIRE].

    ADS  Article  Google Scholar 

  93. B. Henning, X. Lu and H. Murayama, One-loop matching and running with covariant derivative expansion, arXiv:1604.01019 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin Joyce.

Additional information

ArXiv ePrint: 1606.02295

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goon, G., Hinterbichler, K., Joyce, A. et al. Aspects of Galileon non-renormalization. J. High Energ. Phys. 2016, 100 (2016). https://doi.org/10.1007/JHEP11(2016)100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2016)100

Keywords

  • Effective field theories
  • Global Symmetries
  • Scattering Amplitudes