A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity, Phys. Rev.
D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].
ADS
MathSciNet
Google Scholar
G.R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett.
B 485 (2000) 208 [hep-th/0005016] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP
09 (2003) 029 [hep-th/0303116] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP
05 (2010) 015 [arXiv:1003.5917] [INSPIRE].
Article
Google Scholar
G. Goon, K. Hinterbichler and M. Trodden, Symmetries for Galileons and DBI scalars on curved space, JCAP
07 (2011) 017 [arXiv:1103.5745] [INSPIRE].
ADS
Article
Google Scholar
G. Goon, K. Hinterbichler and M. Trodden, A new class of effective field theories from embedded branes, Phys. Rev. Lett.
106 (2011) 231102 [arXiv:1103.6029] [INSPIRE].
ADS
Article
Google Scholar
G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino terms, JHEP
06 (2012) 004 [arXiv:1203.3191] [INSPIRE].
ADS
Article
Google Scholar
C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev.
D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].
ADS
Google Scholar
C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett.
106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].
ADS
Article
Google Scholar
A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett.
B 39 (1972) 393 [INSPIRE].
ADS
Article
Google Scholar
E. Babichev and C. Deffayet, An introduction to the Vainshtein mechanism, Class. Quant. Grav.
30 (2013) 184001 [arXiv:1304.7240] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Nicolis and R. Rattazzi, Classical and quantum consistency of the DGP model, JHEP
06 (2004) 059 [hep-th/0404159] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
K. Kampf and J. Novotny, Unification of Galileon dualities, JHEP
10 (2014) 006 [arXiv:1403.6813] [INSPIRE].
ADS
Article
Google Scholar
C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett.
114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].
ADS
Article
Google Scholar
F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP
07 (2015) 149 [arXiv:1412.3479] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Cheung, K. Kampf, J. Novotny, C.-H. Shen and J. Trnka, On-shell recursion relations for effective field theories, Phys. Rev. Lett.
116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].
ADS
Article
Google Scholar
K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev.
D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].
ADS
MathSciNet
Google Scholar
G.L. Goon, K. Hinterbichler and M. Trodden, Stability and superluminality of spherical DBI Galileon solutions, Phys. Rev.
D 83 (2011) 085015 [arXiv:1008.4580] [INSPIRE].
ADS
Google Scholar
L. Berezhiani, G. Chkareuli and G. Gabadadze, Restricted Galileons, Phys. Rev.
D 88 (2013) 124020 [arXiv:1302.0549] [INSPIRE].
ADS
Google Scholar
G. Gabadadze, R. Kimura and D. Pirtskhalava, Vainshtein solutions without superluminal modes, Phys. Rev.
D 91 (2015) 124024 [arXiv:1412.8751] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP
10 (2006) 014 [hep-th/0602178] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, arXiv:1605.06111 [INSPIRE].
C. Cheung and G.N. Remmen, Positive signs in massive gravity, JHEP
04 (2016) 002 [arXiv:1601.04068] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Dvali, G.F. Giudice, C. Gomez and A. Kehagias, UV-completion by classicalization, JHEP
08 (2011) 108 [arXiv:1010.1415] [INSPIRE].
ADS
Article
MATH
Google Scholar
G. Dvali and D. Pirtskhalava, Dynamics of unitarization by classicalization, Phys. Lett.
B 699 (2011) 78 [arXiv:1011.0114] [INSPIRE].
ADS
Article
Google Scholar
A. Codello, N. Tetradis and O. Zanusso, The renormalization of fluctuating branes, the Galileon and asymptotic safety, JHEP
04 (2013) 036 [arXiv:1212.4073] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Brouzakis, A. Codello, N. Tetradis and O. Zanusso, Quantum corrections in Galileon theories, Phys. Rev.
D 89 (2014) 125017 [arXiv:1310.0187] [INSPIRE].
ADS
Google Scholar
P. Cooper, S. Dubovsky and A. Mohsen, Ultraviolet complete Lorentz-invariant theory with superluminal signal propagation, Phys. Rev.
D 89 (2014) 084044 [arXiv:1312.2021] [INSPIRE].
ADS
Google Scholar
L. Keltner and A.J. Tolley, UV properties of Galileons: spectral densities, arXiv:1502.05706 [INSPIRE].
K. Hinterbichler, M. Trodden and D. Wesley, Multi-field Galileons and higher co-dimension branes, Phys. Rev.
D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].
ADS
Google Scholar
E. Witten, Global aspects of current algebra, Nucl. Phys.
B 223 (1983) 422 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys.
140 (1982) 372 [Erratum ibid.
185 (1988) 406] [Erratum ibid.
281 (2000) 409] [INSPIRE].
E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys.
121 (1989) 351 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
P. Creminelli, A. Nicolis and E. Trincherini, Galilean genesis: an alternative to inflation, JCAP
11 (2010) 021 [arXiv:1007.0027] [INSPIRE].
ADS
Article
Google Scholar
M. Ostrogradsky, Mémoires sur les équations différentielles, relatives au problème des isopérimètres (in French), Mem. Ac. St. Petersbourg
VI 4 (1850) 385 [INSPIRE].
R.P. Woodard, Avoiding dark energy with 1/R modifications of gravity, Lect. Notes Phys.
720 (2007) 403 [astro-ph/0601672] [INSPIRE].
R.P. Woodard, Ostrogradsky’s theorem on Hamiltonian instability, Scholarpedia
10 (2015) 32243 [arXiv:1506.02210] [INSPIRE].
Article
Google Scholar
C.P. Burgess and M. Williams, Who you gonna call? Runaway ghosts, higher derivatives and time-dependence in EFTs, JHEP
08 (2014) 074 [arXiv:1404.2236] [INSPIRE].
ADS
Article
Google Scholar
J.Z. Simon, Higher derivative Lagrangians, nonlocality, problems and solutions, Phys. Rev.
D 41 (1990) 3720 [INSPIRE].
ADS
MathSciNet
Google Scholar
X. Jaen, J. Llosa and A. Molina, A reduction of order two for infinite order Lagrangians, Phys. Rev.
D 34 (1986) 2302 [INSPIRE].
ADS
Google Scholar
S. Endlich, K. Hinterbichler, L. Hui, A. Nicolis and J. Wang, Derrick’s theorem beyond a potential, JHEP
05 (2011) 073 [arXiv:1002.4873] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L.F. Abbott, Introduction to the background field method, Acta Phys. Polon.
B 13 (1982) 33 [INSPIRE].
MathSciNet
Google Scholar
C. de Rham, G. Gabadadze, L. Heisenberg and D. Pirtskhalava, Nonrenormalization and naturalness in a class of scalar-tensor theories, Phys. Rev.
D 87 (2013) 085017 [arXiv:1212.4128] [INSPIRE].
ADS
Google Scholar
C. de Rham, L. Heisenberg and R.H. Ribeiro, Quantum corrections in massive gravity, Phys. Rev.
D 88 (2013) 084058 [arXiv:1307.7169] [INSPIRE].
ADS
Google Scholar
C.P. Burgess, Introduction to effective field theory, Ann. Rev. Nucl. Part. Sci.
57 (2007) 329 [hep-th/0701053] [INSPIRE].
ADS
Article
Google Scholar
B.S. DeWitt, Quantum theory of gravity. 3. Applications of the covariant theory, Phys. Rev.
162 (1967) 1239 [INSPIRE].
M.H. Goroff and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys.
B 266 (1986) 709 [INSPIRE].
ADS
Article
Google Scholar
B.S. DeWitt, The space-time approach to quantum field theory, North-Holland, Amsterdam The Netherlands (1984) [INSPIRE].
G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. H. Poincare Phys. Theor.
A 20 (1974) 69 [INSPIRE].
G. ’t Hooft, An algorithm for the poles at dimension four in the dimensional regularization procedure, Nucl. Phys.
B 62 (1973) 444 [INSPIRE].
C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k-inflation, Phys. Lett.
B 458 (1999) 209 [hep-th/9904075] [INSPIRE].
J. Garriga and V.F. Mukhanov, Perturbations in k-inflation, Phys. Lett.
B 458 (1999) 219 [hep-th/9904176] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T. Chiba, T. Okabe and M. Yamaguchi, Kinetically driven quintessence, Phys. Rev.
D 62 (2000) 023511 [astro-ph/9912463] [INSPIRE].
C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A dynamical solution to the problem of a small cosmological constant and late time cosmic acceleration, Phys. Rev. Lett.
85 (2000) 4438 [astro-ph/0004134] [INSPIRE].
C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, Essentials of k-essence, Phys. Rev.
D 63 (2001) 103510 [astro-ph/0006373] [INSPIRE].
N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a consistent infrared modification of gravity, JHEP
05 (2004) 074 [hep-th/0312099] [INSPIRE].
MathSciNet
Article
Google Scholar
R.G. Leigh, Dirac-Born-Infeld action from Dirichlet σ-model, Mod. Phys. Lett.
A 4 (1989) 2767 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Padmanabhan, Accelerated expansion of the universe driven by tachyonic matter, Phys. Rev.
D 66 (2002) 021301 [hep-th/0204150] [INSPIRE].
ADS
Google Scholar
E. Silverstein and D. Tong, Scalar speed limits and cosmology: acceleration from D-cceleration, Phys. Rev.
D 70 (2004) 103505 [hep-th/0310221] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev.
D 70 (2004) 123505 [hep-th/0404084] [INSPIRE].
ADS
Google Scholar
X. Chen, Inflation from warped space, JHEP
08 (2005) 045 [hep-th/0501184] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Greiter, F. Wilczek and E. Witten, Hydrodynamic relations in superconductivity, Mod. Phys. Lett.
B 3 (1989) 903 [INSPIRE].
ADS
Article
Google Scholar
D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199 [INSPIRE].
S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and superluminal propagation, JHEP
03 (2006) 025 [hep-th/0512260] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Dubovsky, L. Hui, A. Nicolis and D.T. Son, Effective field theory for hydrodynamics: thermodynamics and the derivative expansion, Phys. Rev.
D 85 (2012) 085029 [arXiv:1107.0731] [INSPIRE].
ADS
Google Scholar
D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in nonrelativistic physics: unitary Fermi gas, Annals Phys.
321 (2006) 197 [cond-mat/0509786] [INSPIRE].
L. Berezhiani and J. Khoury, Theory of dark matter superfluidity, Phys. Rev.
D 92 (2015) 103510 [arXiv:1507.01019] [INSPIRE].
ADS
Google Scholar
C. de Rham and R.H. Ribeiro, Riding on irrelevant operators, JCAP
11 (2014) 016 [arXiv:1405.5213] [INSPIRE].
MathSciNet
Article
Google Scholar
S. Bellucci, E. Ivanov and S. Krivonos, AdS/CFT equivalence transformation, Phys. Rev.
D 66 (2002) 086001 [Erratum ibid.
D 67 (2003) 049901] [hep-th/0206126] [INSPIRE].
H. Elvang, D.Z. Freedman, L.-Y. Hung, M. Kiermaier, R.C. Myers and S. Theisen, On renormalization group flows and the a-theorem in 6d, JHEP
10 (2012) 011 [arXiv:1205.3994] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Creminelli, M. Serone and E. Trincherini, Non-linear representations of the conformal group and mapping of Galileons, JHEP
10 (2013) 040 [arXiv:1306.2946] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra
4 (1973) 3 [INSPIRE].
MathSciNet
Google Scholar
R. Sundrum, Gravity’s scalar cousin, hep-th/0312212 [INSPIRE].
V.A. Rubakov, Harrison-Zeldovich spectrum from conformal invariance, JCAP
09 (2009) 030 [arXiv:0906.3693] [INSPIRE].
ADS
Article
Google Scholar
K. Hinterbichler and J. Khoury, The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry, JCAP
04 (2012) 023 [arXiv:1106.1428] [INSPIRE].
ADS
Article
Google Scholar
K. Hinterbichler, A. Joyce and J. Khoury, Non-linear realizations of conformal symmetry and effective field theory for the pseudo-conformal universe, JCAP
06 (2012) 043 [arXiv:1202.6056] [INSPIRE].
ADS
Article
Google Scholar
Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP
12 (2011) 099 [arXiv:1107.3987] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP
07 (2012) 069 [arXiv:1112.4538] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.S.R. Chisholm, Change of variables in quantum field theories, Nucl. Phys.
26 (1961) 469 [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
S. Kamefuchi, L. O’Raifeartaigh and A. Salam, Change of variables and equivalence theorems in quantum field theories, Nucl. Phys.
28 (1961) 529 [INSPIRE].
MathSciNet
Article
Google Scholar
C.P. Burgess and D. London, Uses and abuses of effective Lagrangians, Phys. Rev.
D 48 (1993) 4337 [hep-ph/9203216] [INSPIRE].
A.V. Manohar, Effective field theories, Lect. Notes Phys.
479 (1997) 311 [hep-ph/9606222] [INSPIRE].
I.G. Avramidi, Heat kernel approach in quantum field theory, Nucl. Phys. Proc. Suppl.
104 (2002) 3 [math-ph/0107018] [INSPIRE].
D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept.
388 (2003) 279 [hep-th/0306138] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
H. Georgi, Weak interactions, http://www.people.fas.harvard.edu/∼hgeorgi/weak.pdf.
L. Heisenberg, Quantum corrections in Galileons from matter loops, Phys. Rev.
D 90 (2014) 064005 [arXiv:1408.0267] [INSPIRE].
ADS
Google Scholar
N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge U.K. (1984) [INSPIRE.].
I.L. Shapiro and J. Solà, On the scaling behavior of the cosmological constant and the possible existence of new forces and new light degrees of freedom, Phys. Lett.
B 475 (2000) 236 [hep-ph/9910462] [INSPIRE].
J. Martin, Everything you always wanted to know about the cosmological constant problem (but were afraid to ask), Comptes Rendus Physique
13 (2012) 566 [arXiv:1205.3365] [INSPIRE].
ADS
Article
Google Scholar
D. Pirtskhalava, L. Santoni, E. Trincherini and F. Vernizzi, Weakly broken Galileon symmetry, JCAP
09 (2015) 007 [arXiv:1505.00007] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Gratia, W. Hu, A. Joyce and R.H. Ribeiro, Double screening, JCAP
06 (2016) 033 [arXiv:1604.00395] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
C. Burrage, C. de Rham, D. Seery and A.J. Tolley, Galileon inflation, JCAP
01 (2011) 014 [arXiv:1009.2497] [INSPIRE].
ADS
Article
Google Scholar
B. Henning, X. Lu and H. Murayama, One-loop matching and running with covariant derivative expansion, arXiv:1604.01019 [INSPIRE].