Abstract
We derive a rigorous classification of topologically stable Fermi surfaces of non-interacting, discrete translation-invariant systems from electronic band theory, adiabatic evolution and their topological interpretations. For systems on an infinite crystal it is shown that there can only be topologically unstable Fermi surfaces. For systems on a half- space and with a gapped bulk, our derivation naturally yields a K -theory classification. Given the d − 1-dimensional surface Brillouin zone X s of a d-dimensional half-space, our result implies that different classes of globally stable Fermi surfaces belong in K −1 (Xs) for systems with only discrete translation-invariance. This result has a chiral anomaly inflow interpretation, as it reduces to the spectral flow for d = 2. Through equivariant homotopy methods we extend these results for symmetry classes AI, AII, C and D and discuss their corresponding anomaly inflow interpretation.
References
P. Hořava, Stability of Fermi surfaces and k-theory, Phys. Rev. Lett. 95 (2005) 016405 [hep-th/0503006] [INSPIRE].
A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134 (2009) 22 [arXiv:0901.2686] [INSPIRE].
M.F. Atiyah, V.K Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. III in Mathematical Proceedings of the Cambridge Philosophical Society, volume 79, pg. 71-99, Cambridge University Press (1976).
T. Fukui, K. Shiozaki, T. Fujiwara and S. Fujimoto, Bulk-edge correspondence for Chern topological phases: A viewpoint from a generalized index theorem, J. Phys. Soc. Jpn. 81 (2012) 114602 [arXiv:1206.4410].
S. Ryu, J.E. Moore and A.W.W. Ludwig, Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors, Phys. Rev. B 85 (2012) 045104 [arXiv:1010.0936] [INSPIRE].
S. Ryu and S.-C. Zhang, Interacting topological phases and modular invariance, Phys. Rev. B 85 (2012) 245132 [arXiv:1202.4484] [INSPIRE].
E. Witten, Fermion Path Integrals And Topological Phases, Rev. Mod. Phys. 88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].
C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].
L.D. Faddeev and S.L. Shatashvili, Realization of the Schwinger Term in the Gauss Law and the Possibility of Correct Quantization of a Theory with Anomalies, Phys. Lett. B 167 (1986) 225 [INSPIRE].
E. Fradkin, Field theories of condensed matter physics, Cambridge University Press (2013).
X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].
H.B. Nielsen and M. Ninomiya, A no-go theorem for regularizing chiral fermions, Phys. Lett. B 105 (1981) 219 [INSPIRE].
D.S. Freed and G.W. Moore, Twisted equivariant matter, Ann. Henri Poincaré 14 (2013) 1927 [arXiv:1208.5055] [INSPIRE].
G.C. Thiang, On the K-theoretic classification of topological phases of matter, Ann. Henri Poincaré 17 (2016) 757 [arXiv:1406.7366] [INSPIRE].
N.W. Ashcroft and N.D. Mermin, Solid State Physics, HRW international editions, Holt, Rinehart and Winston (1976).
M.F. Atiyah and I.M. Singer, Index theory for skew-adjoint Fredholm operators, Publ. Math. 37 (1969) 5.
M. Lesch, The uniqueness of the spectral flow on spaces of unbounded self-adjoint fredholm operators, in Spectral geometry of manifolds with boundary and decomposition of manifolds, volume 366, B. Booß-Bavnbek et al. eds., American Mathematical Society (2005) [math/0401411].
M.F. Atiyah, Algebraic topology and operators in Hilbert space, in Lectures in Modern Analysis and Applications I, Springer (1969), pg. 101-121.
B. Booß-Bavnbek and K.P. Wojciechhowski, Elliptic boundary problems for Dirac operators, Springer Science & Business Media (2012).
J.E. Avron, R. Seiler and L.G. Yaffe, Adiabatic theorems and applications to the quantum hall effect, Commun. Math. Phys. 110 (1987) 33.
J.E. Avron and A. Elgart, Adiabatic theorem without a gap condition, Commun. Math. Phys. 203 (1999) 445 [math-ph/9805022] [INSPIRE].
H.J. Schulz, Fermi liquids and non-Fermi liquids, cond-mat/9503150.
S. Matsuura, P.-Y. Chang, A.P. Schnyder and S. Ryu, Protected boundary states in gapless topological phases, New J. Phys. 15 (2013) 065001 [arXiv:1212.2673] [INSPIRE].
C.K. Chiu, J.C. Teo, A.P. Schnyder and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88 (2016) 035005 [arXiv:1505.03535].
J. Feldman, The Spectrum of Periodic Schrödinger Operators, unpublished notes (2000).
A. Altland and M.R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55 (1997) 1142 [INSPIRE].
E. Witten, Three Lectures On Topological Phases Of Matter, Riv. Nuovo Cim. 39 (2016) 313 [arXiv:1510.07698] [INSPIRE].
A. Hatcher, Algebraic Topology, Cambridge University Press (2002).
G. De Nittis and K. Gomi, Classification of “Real” Bloch-bundles: topological quantum systems of type AI, J. Geom. Phys. 86 (2014) 303 [arXiv:1402.1284].
G. De Nittis and K. Gomi, Classification of “Quaternionic” Bloch-Bundles, Commun. Math. Phys. 339 (2015) 1 [INSPIRE].
A. Hatcher, Vector bundles and K-theory, unpublished book (2003), available at http://www.math.cornell.edu/∼hatcher.
Y.X. Zhao and Z.D. Wang, An intrinsic connection between topological stabilities of Fermi surfaces and topological insulators/superconductors, Phys. Rev. B 89 (2014) 075111 [arXiv:1305.1251] [INSPIRE].
A. Gross, Theoretical surface science, volume 1, Springer (2014).
S.G. Davison and M. Steslicka, Basic theory of surface states, volume 46, Oxford University Press (1992).
L.A. Takhtadzhian. Quantum mechanics for mathematicians, volume 95, American Mathematical Society (2008).
E. Prodan and H. Schulz-Baldes, Bulk and boundary invariants for complex topological insulators, arXiv:1510.08744.
G.W. Moore, Quantum symmetries and compatible hamiltonians, (2014), notes available at http://physics.rutgers.edu/∼gmoore/QuantumSymmetryBook.pdf.
M.Z. Hasan and C.L. Kane, Topological Insulators, Rev. Mod. Phys. 82 (2010) 3045 [arXiv:1002.3895] [INSPIRE].
M.F. Atiyah, K-theory and reality, Quart. J. Math 17 (1966) 367.
J.P.C. Greenlees and J.P. May, Equivariant stable homotopy theory, in Handbook of Algebraic Topology, Elsevier (1995), pg. 277.
T. Matumoto, Equivariant K-theory and Fredholm operators, J. Fac. Sci. Univ. Tokyo A 18 (1971) 109.
P.G. De Gennes. Superconductivity of metals and alloys, Advanced Book Classics, Addison-Wesley Publ. Company Inc Redwood City (1999).
C. Doran, S. Mendez-Diez and J. Rosenberg, String theory on elliptic curve orientifolds and KR-theory, Commun. Math. Phys. 335 (2015) 955 [arXiv:1402.4885] [INSPIRE].
A. Adem and Y.-b. Ruan, Twisted orbifold k-theory, Commun. Math. Phys. 237 (2003) 533 [math/0107168] [INSPIRE].
M. Karoubi, Twisted K-theory, old and new, in K-theory and noncommutative geometry, G. Cortiñas ed., European Mathematical Society (2008), pg. 117-149.
A.Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Usp. 44 (2001) 131 [cond-mat/0010440].
A.J. Niemi and G.W. Semenoff, Spectral Flow and the Anomalous Production of Fermions in Odd Dimensions, Phys. Rev. Lett. 54 (1985) 873 [INSPIRE].
R.E. Peierls, Quantum theory of solids, number 23, Oxford University Press (1955).
Z. Ringel, Y.E. Kraus and A. Stern, The Strong side of weak topological insulators, Phys. Rev. B 86 (2012) 045102 [arXiv:1105.4351] [INSPIRE].
R. Nakai, S. Ryu and K. Nomura, Finite-temperature effective field theory of the quantized thermal Hall effect, New J. Phys. 18 (2016) 023038 [arXiv:1504.05343] [INSPIRE].
P. Hořava, Type IIA D-branes, k-theory and matrix theory, Adv. Theor. Math. Phys. 2 (1999) 1373 [hep-th/9812135] [INSPIRE].
B. Booß-Bavnbek, M. Lesch and J. Phillips, Spectral flow of paths of self-adjoint Fredholm operators, Nucl. Phys. (Proc. Suppl.) 104 (2002) 177.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1509.01635
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Adem, A., Camarena, O.A., Semenoff, G.W. et al. Topology of Fermi surfaces and anomaly inflows. J. High Energ. Phys. 2016, 83 (2016). https://doi.org/10.1007/JHEP11(2016)083
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2016)083
Keywords
- Anomalies in Field and String Theories
- Topological Field Theories
- Topological States of Matter