Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Topology of Fermi surfaces and anomaly inflows
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

On Spectral Flow and Fermi Arcs

08 February 2021

Guo Chuan Thiang

Chaotic Trajectories on Fermi Surfaces and Nontrivial Modes of Behavior of Magnetic Conductivity

01 August 2022

I. A. Dynnikov, A. Ya. Maltsev & S. P. Novikov

Ginzberg-Landau-Wilson theory for flat band, Fermi-arc and surface states of strongly correlated systems

12 January 2021

Eunseok Oh, Yunseok Seo, … Sang-Jin Sin

A semiclassical approach to surface Fermi arcs in Weyl semimetals

26 April 2022

Jiajia Huang, Luyang Wang & Dao-Xin Yao

Anomalies in (2+1)D Fermionic Topological Phases and (3+1)D Path Integral State Sums for Fermionic SPTs

05 December 2022

Srivatsa Tata, Ryohei Kobayashi, … Maissam Barkeshli

Fermionic CFTs and classifying algebras

03 June 2020

Ingo Runkel & Gérard M.T. Watts

Extended dynamical symmetries of Landau levels in higher dimensions

14 February 2020

S. Kürkçüoğlu, G. Ünal & İ. Yurduşen

A $${\mathbb {Z}}_{2}$$ Z 2 -Topological Index for Quasi-Free Fermions

14 March 2022

N. J. B. Aza, A. F. Reyes-Lega & L. A. M. Sequera

Two-Dimensional Time-Reversal-Invariant Topological Insulators via Fredholm Theory

27 July 2020

Eli Fonseca, Jacob Shapiro, … Kohtaro Yamakawa

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 14 November 2016

Topology of Fermi surfaces and anomaly inflows

  • Alejandro Adem1,
  • Omar Antolín Camarena1,
  • Gordon W. Semenoff2 &
  • …
  • Daniel Sheinbaum1 

Journal of High Energy Physics volume 2016, Article number: 83 (2016) Cite this article

  • 619 Accesses

  • 2 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We derive a rigorous classification of topologically stable Fermi surfaces of non-interacting, discrete translation-invariant systems from electronic band theory, adiabatic evolution and their topological interpretations. For systems on an infinite crystal it is shown that there can only be topologically unstable Fermi surfaces. For systems on a half- space and with a gapped bulk, our derivation naturally yields a K -theory classification. Given the d − 1-dimensional surface Brillouin zone X s of a d-dimensional half-space, our result implies that different classes of globally stable Fermi surfaces belong in K −1 (Xs) for systems with only discrete translation-invariance. This result has a chiral anomaly inflow interpretation, as it reduces to the spectral flow for d = 2. Through equivariant homotopy methods we extend these results for symmetry classes AI, AII, C and D and discuss their corresponding anomaly inflow interpretation.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. Hořava, Stability of Fermi surfaces and k-theory, Phys. Rev. Lett. 95 (2005) 016405 [hep-th/0503006] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134 (2009) 22 [arXiv:0901.2686] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. M.F. Atiyah, V.K Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry. III in Mathematical Proceedings of the Cambridge Philosophical Society, volume 79, pg. 71-99, Cambridge University Press (1976).

  4. T. Fukui, K. Shiozaki, T. Fujiwara and S. Fujimoto, Bulk-edge correspondence for Chern topological phases: A viewpoint from a generalized index theorem, J. Phys. Soc. Jpn. 81 (2012) 114602 [arXiv:1206.4410].

    Article  ADS  Google Scholar 

  5. S. Ryu, J.E. Moore and A.W.W. Ludwig, Electromagnetic and gravitational responses and anomalies in topological insulators and superconductors, Phys. Rev. B 85 (2012) 045104 [arXiv:1010.0936] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Ryu and S.-C. Zhang, Interacting topological phases and modular invariance, Phys. Rev. B 85 (2012) 245132 [arXiv:1202.4484] [INSPIRE].

    Article  ADS  Google Scholar 

  7. E. Witten, Fermion Path Integrals And Topological Phases, Rev. Mod. Phys. 88 (2016) 035001 [arXiv:1508.04715] [INSPIRE].

    Article  ADS  Google Scholar 

  8. C.G. Callan Jr. and J.A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. L.D. Faddeev and S.L. Shatashvili, Realization of the Schwinger Term in the Gauss Law and the Possibility of Correct Quantization of a Theory with Anomalies, Phys. Lett. B 167 (1986) 225 [INSPIRE].

    Article  ADS  Google Scholar 

  10. E. Fradkin, Field theories of condensed matter physics, Cambridge University Press (2013).

  11. X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev. B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].

    Article  ADS  Google Scholar 

  12. H.B. Nielsen and M. Ninomiya, A no-go theorem for regularizing chiral fermions, Phys. Lett. B 105 (1981) 219 [INSPIRE].

    Article  ADS  Google Scholar 

  13. D.S. Freed and G.W. Moore, Twisted equivariant matter, Ann. Henri Poincaré 14 (2013) 1927 [arXiv:1208.5055] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. G.C. Thiang, On the K-theoretic classification of topological phases of matter, Ann. Henri Poincaré 17 (2016) 757 [arXiv:1406.7366] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. N.W. Ashcroft and N.D. Mermin, Solid State Physics, HRW international editions, Holt, Rinehart and Winston (1976).

  16. M.F. Atiyah and I.M. Singer, Index theory for skew-adjoint Fredholm operators, Publ. Math. 37 (1969) 5.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Lesch, The uniqueness of the spectral flow on spaces of unbounded self-adjoint fredholm operators, in Spectral geometry of manifolds with boundary and decomposition of manifolds, volume 366, B. Booß-Bavnbek et al. eds., American Mathematical Society (2005) [math/0401411].

  18. M.F. Atiyah, Algebraic topology and operators in Hilbert space, in Lectures in Modern Analysis and Applications I, Springer (1969), pg. 101-121.

  19. B. Booß-Bavnbek and K.P. Wojciechhowski, Elliptic boundary problems for Dirac operators, Springer Science & Business Media (2012).

  20. J.E. Avron, R. Seiler and L.G. Yaffe, Adiabatic theorems and applications to the quantum hall effect, Commun. Math. Phys. 110 (1987) 33.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J.E. Avron and A. Elgart, Adiabatic theorem without a gap condition, Commun. Math. Phys. 203 (1999) 445 [math-ph/9805022] [INSPIRE].

  22. H.J. Schulz, Fermi liquids and non-Fermi liquids, cond-mat/9503150.

  23. S. Matsuura, P.-Y. Chang, A.P. Schnyder and S. Ryu, Protected boundary states in gapless topological phases, New J. Phys. 15 (2013) 065001 [arXiv:1212.2673] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. C.K. Chiu, J.C. Teo, A.P. Schnyder and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88 (2016) 035005 [arXiv:1505.03535].

    Article  ADS  Google Scholar 

  25. J. Feldman, The Spectrum of Periodic Schrödinger Operators, unpublished notes (2000).

  26. A. Altland and M.R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55 (1997) 1142 [INSPIRE].

    Article  ADS  Google Scholar 

  27. E. Witten, Three Lectures On Topological Phases Of Matter, Riv. Nuovo Cim. 39 (2016) 313 [arXiv:1510.07698] [INSPIRE].

    ADS  Google Scholar 

  28. A. Hatcher, Algebraic Topology, Cambridge University Press (2002).

  29. G. De Nittis and K. Gomi, Classification of “Real” Bloch-bundles: topological quantum systems of type AI, J. Geom. Phys. 86 (2014) 303 [arXiv:1402.1284].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. G. De Nittis and K. Gomi, Classification of “Quaternionic” Bloch-Bundles, Commun. Math. Phys. 339 (2015) 1 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. A. Hatcher, Vector bundles and K-theory, unpublished book (2003), available at http://www.math.cornell.edu/∼hatcher.

  32. Y.X. Zhao and Z.D. Wang, An intrinsic connection between topological stabilities of Fermi surfaces and topological insulators/superconductors, Phys. Rev. B 89 (2014) 075111 [arXiv:1305.1251] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Gross, Theoretical surface science, volume 1, Springer (2014).

  34. S.G. Davison and M. Steslicka, Basic theory of surface states, volume 46, Oxford University Press (1992).

  35. L.A. Takhtadzhian. Quantum mechanics for mathematicians, volume 95, American Mathematical Society (2008).

  36. E. Prodan and H. Schulz-Baldes, Bulk and boundary invariants for complex topological insulators, arXiv:1510.08744.

  37. G.W. Moore, Quantum symmetries and compatible hamiltonians, (2014), notes available at http://physics.rutgers.edu/∼gmoore/QuantumSymmetryBook.pdf.

  38. M.Z. Hasan and C.L. Kane, Topological Insulators, Rev. Mod. Phys. 82 (2010) 3045 [arXiv:1002.3895] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M.F. Atiyah, K-theory and reality, Quart. J. Math 17 (1966) 367.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. J.P.C. Greenlees and J.P. May, Equivariant stable homotopy theory, in Handbook of Algebraic Topology, Elsevier (1995), pg. 277.

  41. T. Matumoto, Equivariant K-theory and Fredholm operators, J. Fac. Sci. Univ. Tokyo A 18 (1971) 109.

    MathSciNet  MATH  Google Scholar 

  42. P.G. De Gennes. Superconductivity of metals and alloys, Advanced Book Classics, Addison-Wesley Publ. Company Inc Redwood City (1999).

  43. C. Doran, S. Mendez-Diez and J. Rosenberg, String theory on elliptic curve orientifolds and KR-theory, Commun. Math. Phys. 335 (2015) 955 [arXiv:1402.4885] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. A. Adem and Y.-b. Ruan, Twisted orbifold k-theory, Commun. Math. Phys. 237 (2003) 533 [math/0107168] [INSPIRE].

  45. M. Karoubi, Twisted K-theory, old and new, in K-theory and noncommutative geometry, G. Cortiñas ed., European Mathematical Society (2008), pg. 117-149.

  46. A.Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Usp. 44 (2001) 131 [cond-mat/0010440].

  47. A.J. Niemi and G.W. Semenoff, Spectral Flow and the Anomalous Production of Fermions in Odd Dimensions, Phys. Rev. Lett. 54 (1985) 873 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. R.E. Peierls, Quantum theory of solids, number 23, Oxford University Press (1955).

  49. Z. Ringel, Y.E. Kraus and A. Stern, The Strong side of weak topological insulators, Phys. Rev. B 86 (2012) 045102 [arXiv:1105.4351] [INSPIRE].

    Article  ADS  Google Scholar 

  50. R. Nakai, S. Ryu and K. Nomura, Finite-temperature effective field theory of the quantized thermal Hall effect, New J. Phys. 18 (2016) 023038 [arXiv:1504.05343] [INSPIRE].

    Article  ADS  Google Scholar 

  51. P. Hořava, Type IIA D-branes, k-theory and matrix theory, Adv. Theor. Math. Phys. 2 (1999) 1373 [hep-th/9812135] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  52. B. Booß-Bavnbek, M. Lesch and J. Phillips, Spectral flow of paths of self-adjoint Fredholm operators, Nucl. Phys. (Proc. Suppl.) 104 (2002) 177.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Mathematics, University of British Columbia, 1984 Mathematics Road, Vancouver, V6T 1Z2, Canada

    Alejandro Adem, Omar Antolín Camarena & Daniel Sheinbaum

  2. Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, V6T 1Z1, Canada

    Gordon W. Semenoff

Authors
  1. Alejandro Adem
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Omar Antolín Camarena
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Gordon W. Semenoff
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Daniel Sheinbaum
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Daniel Sheinbaum.

Additional information

ArXiv ePrint: 1509.01635

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adem, A., Camarena, O.A., Semenoff, G.W. et al. Topology of Fermi surfaces and anomaly inflows. J. High Energ. Phys. 2016, 83 (2016). https://doi.org/10.1007/JHEP11(2016)083

Download citation

  • Received: 09 August 2016

  • Revised: 22 September 2016

  • Accepted: 07 November 2016

  • Published: 14 November 2016

  • DOI: https://doi.org/10.1007/JHEP11(2016)083

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Anomalies in Field and String Theories
  • Topological Field Theories
  • Topological States of Matter
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.