Skip to main content

Constraining minimal anomaly free U(1) extensions of the Standard Model

A preprint version of the article is available at arXiv.


We consider a class of minimal anomaly free U(1) extensions of the Standard Model with three generations of right-handed neutrinos and a complex scalar. Using electroweak precision constraints, new 13 TeV LHC data, and considering theoretical limitations such as perturbativity, we show that it is possible to constrain a wide class of models. By classifying these models with a single parameter, κ, we can put a model independent upper bound on the new U(1) gauge coupling g z . We find that the new dilepton data puts strong bounds on the parameters, especially in the mass region M Z ′ ≲ 3 TeV.


  1. P. Langacker, Grand Unified Theories and Proton Decay, Phys. Rept. 72 (1981) 185 [INSPIRE].

    ADS  Article  Google Scholar 

  2. R.W. Robinett and J.L. Rosner, Prospects for a Second Neutral Vector Boson at Low Mass in SO(10), Phys. Rev. D 25 (1982) 3036 [Erratum ibid. D 27 (1983) 679] [INSPIRE].

  3. R.W. Robinett and J.L. Rosner, Mass Scales in Grand Unified Theories, Phys. Rev. D 26 (1982) 2396 [INSPIRE].

    ADS  Google Scholar 

  4. P. Langacker, R.W. Robinett and J.L. Rosner, New Heavy Gauge Bosons in p p and \( p\overline{p} \) Collisions, Phys. Rev. D 30 (1984) 1470 [INSPIRE].

    ADS  Google Scholar 

  5. D. London and J.L. Rosner, Extra Gauge Bosons in E 6, Phys. Rev. D 34 (1986) 1530 [INSPIRE].

    ADS  Google Scholar 

  6. J.L. Hewett and T.G. Rizzo, Low-Energy Phenomenology of Superstring Inspired E 6 Models, Phys. Rept. 183 (1989) 193 [INSPIRE].

    ADS  Article  Google Scholar 

  7. L.E. Ibáñez, J.E. Kim, H.P. Nilles and F. Quevedo, Orbifold Compactifications with Three Families of SU(3) × SU(2) × U(1)n, Phys. Lett. B 191 (1987) 282 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. J.A. Casas, E.K. Katehou and C. Muñoz, U(1) Charges in Orbifolds: Anomaly Cancellation and Phenomenological Consequences, Nucl. Phys. B 317 (1989) 171 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. M. Cvetič and P. Langacker, Implications of Abelian extended gauge structures from string models, Phys. Rev. D 54 (1996) 3570 [hep-ph/9511378] [INSPIRE].

  10. M. Cvetič and P. Langacker, New gauge bosons from string models, Mod. Phys. Lett. A 11 (1996) 1247 [hep-ph/9602424] [INSPIRE].

  11. M. Masip and A. Pomarol, Effects of SM Kaluza-Klein excitations on electroweak observables, Phys. Rev. D 60 (1999) 096005 [hep-ph/9902467] [INSPIRE].

  12. R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, SM Kaluza-Klein excitations and electroweak precision tests, Phys. Lett. B 462 (1999) 48 [hep-ph/9907355] [INSPIRE].

  13. A. Delgado, A. Pomarol and M. Quirós, Electroweak and flavor physics in extensions of the standard model with large extra dimensions, JHEP 01 (2000) 030 [hep-ph/9911252] [INSPIRE].

  14. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].

  15. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

  16. K. Agashe et al., LHC Signals for Warped Electroweak Neutral Gauge Bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [INSPIRE].

    ADS  Google Scholar 

  17. C.T. Hill, Topcolor assisted technicolor, Phys. Lett. B 345 (1995) 483 [hep-ph/9411426] [INSPIRE].

  18. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE].

  19. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].

  20. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire and J.G. Wacker, The Minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].

  21. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].

  22. B. Körs and P. Nath, A Stueckelberg extension of the standard model, Phys. Lett. B 586 (2004) 366 [hep-ph/0402047] [INSPIRE].

  23. B. Körs and P. Nath, A Supersymmetric Stueckelberg U(1) extension of the MSSM, JHEP 12 (2004) 005 [hep-ph/0406167] [INSPIRE].

  24. B. Körs and P. Nath, Aspects of the Stueckelberg extension, JHEP 07 (2005) 069 [hep-ph/0503208] [INSPIRE].

  25. D. Feldman, Z. Liu and P. Nath, The Stueckelberg Z-prime Extension with Kinetic Mixing and Milli-Charged Dark Matter From the Hidden Sector, Phys. Rev. D 75 (2007) 115001 [hep-ph/0702123] [INSPIRE].

  26. A. Leike, The Phenomenology of extra neutral gauge bosons, Phys. Rept. 317 (1999) 143 [hep-ph/9805494] [INSPIRE].

  27. P. Langacker, The Physics of Heavy Z Gauge Bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    ADS  Article  Google Scholar 

  28. T.G. Rizzo, Z phenomenology and the LHC, hep-ph/0610104 [INSPIRE].

  29. L. Basso, Phenomenology of the minimal B-L extension of the Standard Model at the LHC, arXiv:1106.4462 [INSPIRE].

  30. CMS collaboration, Search for narrow resonances decaying to dijets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 116 (2016) 071801 [arXiv:1512.01224] [INSPIRE].

  31. ATLAS collaboration, Search for new phenomena in dijet mass and angular distributions from pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 754 (2016) 302 [arXiv:1512.01530] [INSPIRE].

  32. CMS collaboration, Search for a Narrow Resonance Produced in 13 TeV pp Collisions Decaying to Electron Pair or Muon Pair Final States, CMS-PAS-EXO-15-005.

  33. ATLAS collaboration, Search for new phenomena in the dilepton final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-070 (2015).

  34. ATLAS collaboration, Search for W W/W Z resonance production in the ℓνqq final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC,ATLAS-CONF-2015-075 (2015).

  35. ATLAS collaboration, Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 12 (2015) 055 [arXiv:1506.00962] [INSPIRE].

  36. T. Appelquist, B.A. Dobrescu and A.R. Hopper, Nonexotic neutral gauge bosons, Phys. Rev. D 68 (2003) 035012 [hep-ph/0212073] [INSPIRE].

  37. Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  38. S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press (1996).

  39. F. Staub et al., Precision tools and models to narrow in on the 750 GeV diphoton resonance, Eur. Phys. J. C 76 (2016) 516 [arXiv:1602.05581] [INSPIRE].

    ADS  Article  Google Scholar 

  40. Y.A. Coutinho, E.C.F.S. Fortes and J.C. Montero, \( {Z}_{{{}^B}^{-L}}^{\prime } \) phenomenology at LHC, Phys. Rev. D 84 (2011) 055004 [Erratum ibid. D 84 (2011) 059901] [arXiv:1102.4387] [INSPIRE].

  41. J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky and W.K. Tung, New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

  42. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  43. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  44. ATLAS collaboration, Search for new high-mass resonances in the dilepton final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-045 (2016).

  45. K. Gumus, N. Akchurin, S. Esen and R.M. Harris,, CMS Sensitivity to Dijet Resonances, CMS-NOTE-2006-070.

  46. P. Anastasopoulos, M. Bianchi, E. Dudas and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [hep-th/0605225] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. A. Ekstedt, R. Enberg, G. Ingelman, J. Löfgren and T. Mandal, work in progress.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Johan Löfgren.

Additional information

ArXiv ePrint: 1605.04855

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ekstedt, A., Enberg, R., Ingelman, G. et al. Constraining minimal anomaly free U(1) extensions of the Standard Model. J. High Energ. Phys. 2016, 71 (2016).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Beyond Standard Model
  • Gauge Symmetry