Abstract
We construct renormalizable Standard Model extensions, valid up to the Planck scale, that give a composite Higgs from a new fundamental strong force acting on fermions and scalars. Yukawa interactions of these particles with Standard Model fermions realize the partial compositeness scenario. Under certain assumptions on the dynamics of the scalars, successful models exist because gauge quantum numbers of Standard Model fermions admit a minimal enough ‘square root’. Furthermore, right-handed SM fermions have an SU(2) R -like structure, yielding a custodially-protected composite Higgs. Baryon and lepton numbers arise accidentally. Standard Model fermions acquire mass at tree level, while the Higgs potential and flavor violations are generated by quantum corrections. We further discuss accidental symmetries and other dynamical features stemming from the new strongly interacting scalars. If the same phenomenology can be obtained from models without our elementary scalars, they would reappear as composite states.
Article PDF
References
D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].
D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].
M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].
K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
T. Alanne, H. Gertov, F. Sannino and K. Tuominen, Elementary Goldstone Higgs boson and dark matter, Phys. Rev. D 91 (2015) 095021 [arXiv:1411.6132] [INSPIRE].
H. Gertov, A. Meroni, E. Molinaro and F. Sannino, Theory and phenomenology of the elementary Goldstone Higgs boson, Phys. Rev. D 92 (2015) 095003 [arXiv:1507.06666] [INSPIRE].
G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) pp.1-316 [arXiv:1506.01961] [INSPIRE].
D.B. Kaplan, Flavor at SSC energies: A New mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].
R. Contino and A. Pomarol, Holography for fermions, JHEP 11 (2004) 058 [hep-th/0406257] [INSPIRE].
R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].
C. Pica and F. Sannino, Anomalous Dimensions of Conformal Baryons, Phys. Rev. D 94 (2016) 071702 [arXiv:1604.02572] [INSPIRE].
M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [INSPIRE].
R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].
D. Poland, D. Simmons-Duffin and A. Vichi, Carving Out the Space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].
E.H. Simmons, Phenomenology of a Technicolor Model With Heavy Scalar Doublet, Nucl. Phys. B 312 (1989) 253 [INSPIRE].
C.D. Carone and E.H. Simmons, Oblique corrections in technicolor with a scalar, Nucl. Phys. B 397 (1993) 591 [hep-ph/9207273] [INSPIRE].
V. Hemmige and E.H. Simmons, Current bounds on technicolor with scalars, Phys. Lett. B 518 (2001) 72 [hep-ph/0107117] [INSPIRE].
C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [INSPIRE].
M. Antola, M. Heikinheimo, F. Sannino and K. Tuominen, Unnatural Origin of Fermion Masses for Technicolor, JHEP 03 (2010) 050 [arXiv:0910.3681] [INSPIRE].
B.A. Dobrescu and E.H. Simmons, Top-bottom splitting in technicolor with composite scalars, Phys. Rev. D 59 (1999) 015014 [hep-ph/9807469] [INSPIRE].
M. Antola, S. Di Chiara, F. Sannino and K. Tuominen, Minimal Super Technicolor, Eur. Phys. J. C 71 (2011) 1784 [arXiv:1001.2040] [INSPIRE].
A. Strumia, Theory Summary of Moriond Electro-Weak 2015, arXiv:1504.08331 [INSPIRE].
O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and Dark Matter scales from strong interactions, JHEP 01 (2015) 157 [arXiv:1410.1817] [INSPIRE].
H. Ishida, S. Matsuzaki and Y. Yamaguchi, Invisible Axion-Like Dark Matter from Electroweak Bosonic Seesaw, arXiv:1604.07712 [INSPIRE].
J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE].
G. Ferretti and D. Karateev, Fermionic UV completions of Composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE].
L. Vecchi, A dangerous irrelevant UV-completion of the composite Higgs, arXiv:1506.00623 [INSPIRE].
G. Ferretti, Gauge theories of Partial Compositeness: Scenarios for Run-II of the LHC, JHEP 06 (2016) 107 [arXiv:1604.06467] [INSPIRE].
F. Caracciolo, A. Parolini and M. Serone, UV Completions of Composite Higgs Models with Partial Compositeness, JHEP 02 (2013) 066 [arXiv:1211.7290] [INSPIRE].
J. Krog, M. Mojaza and F. Sannino, Four-Fermion Limit of Gauge-Yukawa Theories, Phys. Rev. D 92 (2015) 085043 [arXiv:1506.02642] [INSPIRE].
G.F. Giudice, G. Isidori, A. Salvio and A. Strumia, Softened Gravity and the Extension of the Standard Model up to Infinite Energy, JHEP 02 (2015) 137 [arXiv:1412.2769] [INSPIRE].
D.D. Dietrich and F. Sannino, Conformal window of SU(N ) gauge theories with fermions in higher dimensional representations, Phys. Rev. D 75 (2007) 085018 [hep-ph/0611341] [INSPIRE].
F. Sannino, Conformal Windows of SP(2N) and SO(N ) Gauge Theories, Phys. Rev. D 79 (2009) 096007 [arXiv:0902.3494] [INSPIRE].
E.H. Fradkin and S.H. Shenker, Phase Diagrams of Lattice Gauge Theories with Higgs Fields, Phys. Rev. D 19 (1979) 3682 [INSPIRE].
C. Vafa and E. Witten, Restrictions on Symmetry Breaking in Vector-Like Gauge Theories, Nucl. Phys. B 234 (1984) 173 [INSPIRE].
S. Dimopoulos, S. Raby and L. Susskind, Light Composite Fermions, Nucl. Phys. B 173 (1980) 208 [INSPIRE].
C. Pica and F. Sannino, β-function and Anomalous Dimensions, Phys. Rev. D 83 (2011) 116001 [arXiv:1011.3832] [INSPIRE].
C. Pica and F. Sannino, UV and IR Zeros of Gauge Theories at The Four Loop Order and Beyond, Phys. Rev. D 83 (2011) 035013 [arXiv:1011.5917] [INSPIRE].
T.A. Ryttov and R. Shrock, Higher-Loop Corrections to the Infrared Evolution of a Gauge Theory with Fermions, Phys. Rev. D 83 (2011) 056011 [arXiv:1011.4542] [INSPIRE].
H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].
R. Lewis, C. Pica and F. Sannino, Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors, Phys. Rev. D 85 (2012) 014504 [arXiv:1109.3513] [INSPIRE].
A. Hietanen, R. Lewis, C. Pica and F. Sannino, Fundamental Composite Higgs Dynamics on the Lattice: SU(2) with Two Flavors, JHEP 07 (2014) 116 [arXiv:1404.2794] [INSPIRE].
R. Arthur, V. Drach, M. Hansen, A. Hietanen, C. Pica and F. Sannino, SU(2) Gauge Theory with Two Fundamental Flavours: a Minimal Template for Model Building, arXiv:1602.06559 [INSPIRE].
P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin Breaking in Technicolor Models, Nucl. Phys. B 173 (1980) 189 [INSPIRE].
J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].
K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for Zbb, Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
O. Antipin, M. Redi, A. Strumia and E. Vigiani, Accidental Composite Dark Matter, JHEP 07 (2015) 039 [arXiv:1503.08749] [INSPIRE].
L. Vecchi, The Natural Composite Higgs, arXiv:1304.4579 [INSPIRE].
G. Cacciapaglia and F. Sannino, Fundamental Composite (Goldstone) Higgs Dynamics, JHEP 04 (2014) 111 [arXiv:1402.0233] [INSPIRE].
S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].
C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].
F. Sannino, Large-N Scalars: From Glueballs to Dynamical Higgs Models, Phys. Rev. D 93 (2016) 105011 [arXiv:1508.07413] [INSPIRE].
C. Csáki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].
M. Redi and A. Weiler, Flavor and CP Invariant Composite Higgs Models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].
B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi and L. Vecchi, On Partial Compositeness and the CP asymmetry in charm decays, Nucl. Phys. B 867 (2013) 394 [arXiv:1205.5803] [INSPIRE].
R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069 [arXiv:1211.5085] [INSPIRE].
O. Matsedonskyi, On Flavour and Naturalness of Composite Higgs Models, JHEP 02 (2015) 154 [arXiv:1411.4638] [INSPIRE].
A. Romanino and A. Strumia, Electric dipole moments from Yukawa phases in supersymmetric theories, Nucl. Phys. B 490 (1997) 3 [hep-ph/9610485] [INSPIRE].
ACME collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
J.M. Pendlebury et al., Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D 92 (2015) 092003 [arXiv:1509.04411] [INSPIRE].
MEG collaboration, J. Adam et al., New constraint on the existence of the μ + → e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].
B. Gripaios, Composite Leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [INSPIRE].
L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, Universal Constraints on Low-Energy Flavour Models, JHEP 07 (2012) 004 [arXiv:1204.1275] [INSPIRE].
G. Isidori, Flavor physics and CP-violation, arXiv:1302.0661 [INSPIRE].
M. González-Alonso and J. Martin Camalich, Global Effective-Field-Theory analysis of New-Physics effects in (semi)leptonic kaon decays, arXiv:1605.07114 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1607.01659
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Sannino, F., Strumia, A., Tesi, A. et al. Fundamental partial compositeness. J. High Energ. Phys. 2016, 29 (2016). https://doi.org/10.1007/JHEP11(2016)029
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2016)029