Journal of High Energy Physics

, Volume 2016, Issue 11, pp 1–61 | Cite as

Factorization and resummation for jet processes

  • Thomas BecherEmail author
  • Matthias Neubert
  • Lorena Rothen
  • Ding Yu Shao
Open Access
Regular Article - Theoretical Physics


From a detailed analysis of cone-jet cross sections in effective field theory, we obtain novel factorization theorems which separate the physics associated with different energy scales present in such processes. The relevant low-energy physics is encoded in Wilson lines along the directions of the energetic particles inside the jets. This multi-Wilson-line structure is present even for narrow-cone jets due to the relevance of small-angle soft radiation. We discuss the renormalization-group equations satisfied by these operators. Their solution resums all logarithmically enhanced contributions to such processes, including non-global logarithms. Such logarithms arise in many observables, in particular whenever hard phase-space constraints are imposed, and are not captured with standard resummation techniques. Our formalism provides the basis for higher-order logarithmic resummations of jet and other non-global observables. As a nontrivial consistency check, we use it to obtain explicit two-loop results for all logarithmically enhanced terms in cone-jet cross sections and verify those against numerical fixed-order computations.


Effective field theories Perturbative QCD Renormalization Group Resummation 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F. Bloch and A. Nordsieck, Note on the Radiation Field of the electron, Phys. Rev. 52 (1937) 54 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516.ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Ciafaloni and G. Curci, Exponentiation of Large-N Singularities in QCD, Phys. Lett. B 102 (1981) 352 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].
  6. [6]
    A. Bassetto, M. Ciafaloni and G. Marchesini, Jet Structure and Infrared Sensitive Quantities in Perturbative QCD, Phys. Rept. 100 (1983) 201 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G.P. Korchemsky and A.V. Radyushkin, Loop Space Formalism and Renormalization Group for the Infrared Asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett. B 313 (1993) 433 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].ADSGoogle Scholar
  11. [11]
    I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
  13. [13]
    T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 1311 (2013) 024] [arXiv:0903.1126] [INSPIRE].
  14. [14]
    L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP 02 (2010) 081 [arXiv:0910.3653] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Dasgupta and G.P. Salam, Event shapes in e + e annihilation and deep inelastic scattering, J. Phys. G 30 (2004) R143 [hep-ph/0312283] [INSPIRE].
  16. [16]
    G. Luisoni and S. Marzani, QCD resummation for hadronic final states, J. Phys. G 42 (2015) 103101 [arXiv:1505.04084] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  18. [18]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  19. [19]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
  20. [20]
    T. Becher, A. Broggio and A. Ferroglia, Lecture Notes in Physics. Vol. 896: Introduction to Soft-Collinear Effective Theory, Springer, Berlin Germany (2015).Google Scholar
  21. [21]
    T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Y.-T. Chien and M.D. Schwartz, Resummation of heavy jet mass and comparison to LEP data, JHEP 08 (2010) 058 [arXiv:1005.1644] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N 3 LL including power corrections, Phys. Rev. D 91 (2015) 094017 [arXiv:1411.6633] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
  25. [25]
    M.D. Schwartz and H.X. Zhu, Nonglobal logarithms at three loops, four loops, five loops and beyond, Phys. Rev. D 90 (2014) 065004 [arXiv:1403.4949] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].
  27. [27]
    H. Weigert, Nonglobal jet evolution at finite N c, Nucl. Phys. B 685 (2004) 321 [hep-ph/0312050] [INSPIRE].
  28. [28]
    Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite N c, Nucl. Phys. B 874 (2013) 808 [arXiv:1304.6930] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    Y. Hagiwara, Y. Hatta and T. Ueda, Hemisphere jet mass distribution at finite N c, Phys. Lett. B 756 (2016) 254 [arXiv:1507.07641] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global Structure of the O(α s2) Dijet Soft Function, JHEP 08 (2011) 054 [arXiv:1105.4628] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, Jet Mass with a Jet Veto at Two Loops and the Universality of Non-Global Structure, Phys. Rev. D 86 (2012) 054017 [arXiv:1112.3343] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. von Manteuffel, R.M. Schabinger and H.X. Zhu, The Complete Two-Loop Integrated Jet Thrust Distribution In Soft-Collinear Effective Theory, JHEP 03 (2014) 139 [arXiv:1309.3560] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Khelifa-Kerfa and Y. Delenda, Non-global logarithms at finite N c beyond leading order, JHEP 03 (2015) 094 [arXiv:1501.00475] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    A.J. Larkoski, I. Moult and D. Neill, Non-Global Logarithms, Factorization and the Soft Substructure of Jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D. Neill, The Edge of Jets and Subleading Non-Global Logs, arXiv:1508.07568 [INSPIRE].
  37. [37]
    S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, arXiv:1501.03754 [INSPIRE].
  38. [38]
    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Effective Field Theory for Jet Processes, Phys. Rev. Lett. 116 (2016) 192001 [arXiv:1508.06645] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y.-T. Chien, A. Hornig and C. Lee, Soft-collinear mode for jet cross sections in soft collinear effective theory, Phys. Rev. D 93 (2016) 014033 [arXiv:1509.04287] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  41. [41]
    V.A. Smirnov, Springer Tracts in Modern Physics. Vol. 177: Applied asymptotic expansions in momenta and masses, Springer, Heidelberg Germany (2002).Google Scholar
  42. [42]
    G.F. Sterman and S. Weinberg, Jets from Quantum Chromodynamics, Phys. Rev. Lett. 39 (1977) 1436 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Catani and M.H. Seymour, The Dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  44. [44]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  45. [45]
    R.J. Hill and M. Neubert, Spectator interactions in soft collinear effective theory, Nucl. Phys. B 657 (2003) 229 [hep-ph/0211018] [INSPIRE].
  46. [46]
    T. Becher, R.J. Hill and M. Neubert, Soft collinear messengers: A New mode in soft collinear effective theory, Phys. Rev. D 69 (2004) 054017 [hep-ph/0308122] [INSPIRE].
  47. [47]
    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for Dijet Invariant Mass Spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].ADSGoogle Scholar
  48. [48]
    T. Becher and G. Bell, NNLL Resummation for Jet Broadening, JHEP 11 (2012) 126 [arXiv:1210.0580] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].
  51. [51]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  52. [52]
    G. Kramer and B. Lampe, Two Jet Cross-Section in e + e Annihilation, Z. Phys. C 34 (1987) 497 [Erratum ibid. C 42 (1989) 504] [INSPIRE].
  53. [53]
    T. Matsuura and W.L. van Neerven, Second Order Logarithmic Corrections to the Drell-Yan Cross-section, Z. Phys. C 38 (1988) 623 [INSPIRE].ADSGoogle Scholar
  54. [54]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    D. Kang, O.Z. Labun and C. Lee, Equality of hemisphere soft functions for e + e , DIS and pp collisions at \( \mathcal{O}\left({\alpha}_s^2\right) \), Phys. Lett. B 748 (2015) 45 [arXiv:1504.04006] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    A.V. Belitsky, Two loop renormalization of Wilson loop for Drell-Yan production, Phys. Lett. B 442 (1998) 307 [hep-ph/9808389] [INSPIRE].
  57. [57]
    T. Becher and X. Garcia i Tormo, Factorization and resummation for transverse thrust, JHEP 06 (2015) 071 [arXiv:1502.04136] [INSPIRE].
  58. [58]
    P.F. Monni, T. Gehrmann and G. Luisoni, Two-Loop Soft Corrections and Resummation of the Thrust Distribution in the Dijet Region, JHEP 08 (2011) 010 [arXiv:1105.4560] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to all orders in QCD, JHEP 04 (2015) 039 [arXiv:1411.5182] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Sjodahl, Color structure for soft gluon resummation: A General recipe, JHEP 09 (2009) 087 [arXiv:0906.1121] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E t flow: A Case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].
  62. [62]
    S. Caron-Huot, private communication.Google Scholar
  63. [63]
    S. Caron-Huot and M. Herranen, High-energy evolution to three loops, arXiv:1604.07417 [INSPIRE].
  64. [64]
    J.R. Walsh and S. Zuberi, Factorization Constraints on Jet Substructure, arXiv:1110.5333 [INSPIRE].
  65. [65]
    R. Kelley, J.R. Walsh and S. Zuberi, Disentangling Clustering Effects in Jet Algorithms, arXiv:1203.2923 [INSPIRE].
  66. [66]
    A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Gangal, M. Stahlhofen and F.J. Tackmann, Rapidity-Dependent Jet Vetoes, Phys. Rev. D 91 (2015) 054023 [arXiv:1412.4792] [INSPIRE].ADSGoogle Scholar
  68. [68]
    I.Z. Rothstein and I.W. Stewart, An Effective Field Theory for Forward Scattering and Factorization Violation, JHEP 08 (2016) 025 [arXiv:1601.04695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    A. Idilbi and A. Majumder, Extending Soft-Collinear-Effective-Theory to describe hard jets in dense QCD media, Phys. Rev. D 80 (2009) 054022 [arXiv:0808.1087] [INSPIRE].ADSGoogle Scholar
  70. [70]
    J.F. Donoghue and D. Wyler, On Regge kinematics in SCET, Phys. Rev. D 81 (2010) 114023 [arXiv:0908.4559] [INSPIRE].ADSGoogle Scholar
  71. [71]
    C.W. Bauer, B.O. Lange and G. Ovanesyan, On Glauber modes in Soft-Collinear Effective Theory, JHEP 07 (2011) 077 [arXiv:1010.1027] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    J.F. Donoghue, B.K. El-Menoufi and G. Ovanesyan, Regge behavior in effective field theory, Phys. Rev. D 90 (2014) 096009 [arXiv:1405.1731] [INSPIRE].ADSGoogle Scholar
  73. [73]
    S. Fleming, The role of Glauber exchange in soft collinear effective theory and the Balitsky-Fadin-Kuraev-Lipatov Equation, Phys. Lett. B 735 (2014) 266 [arXiv:1404.5672] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP 08 (2006) 059 [hep-ph/0604094] [INSPIRE].
  75. [75]
    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: Colour basis independent calculation, JHEP 09 (2008) 128 [arXiv:0808.1269] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Thomas Becher
    • 1
    Email author
  • Matthias Neubert
    • 2
    • 3
  • Lorena Rothen
    • 4
  • Ding Yu Shao
    • 1
  1. 1.Albert Einstein Center for Fundamental Physics, Institut für Theoretische PhysikUniversität BernBernSwitzerland
  2. 2.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany
  3. 3.Department of PhysicsLEPP, Cornell UniversityIthacaU.S.A.
  4. 4.Theory Group, Deutsches Elektronen-Synchrotron (DESY)HamburgGermany

Personalised recommendations