Advertisement

Journal of High Energy Physics

, Volume 2016, Issue 11, pp 1–61 | Cite as

Factorization and resummation for jet processes

  • Thomas BecherEmail author
  • Matthias Neubert
  • Lorena Rothen
  • Ding Yu Shao
Open Access
Regular Article - Theoretical Physics

Abstract

From a detailed analysis of cone-jet cross sections in effective field theory, we obtain novel factorization theorems which separate the physics associated with different energy scales present in such processes. The relevant low-energy physics is encoded in Wilson lines along the directions of the energetic particles inside the jets. This multi-Wilson-line structure is present even for narrow-cone jets due to the relevance of small-angle soft radiation. We discuss the renormalization-group equations satisfied by these operators. Their solution resums all logarithmically enhanced contributions to such processes, including non-global logarithms. Such logarithms arise in many observables, in particular whenever hard phase-space constraints are imposed, and are not captured with standard resummation techniques. Our formalism provides the basis for higher-order logarithmic resummations of jet and other non-global observables. As a nontrivial consistency check, we use it to obtain explicit two-loop results for all logarithmically enhanced terms in cone-jet cross sections and verify those against numerical fixed-order computations.

Keywords

Effective field theories Perturbative QCD Renormalization Group Resummation 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Bloch and A. Nordsieck, Note on the Radiation Field of the electron, Phys. Rev. 52 (1937) 54 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516.ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Ciafaloni and G. Curci, Exponentiation of Large-N Singularities in QCD, Phys. Lett. B 102 (1981) 352 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.C. Collins and D.E. Soper, Back-To-Back Jets in QCD, Nucl. Phys. B 193 (1981) 381 [Erratum ibid. B 213 (1983) 545] [INSPIRE].
  6. [6]
    A. Bassetto, M. Ciafaloni and G. Marchesini, Jet Structure and Infrared Sensitive Quantities in Perturbative QCD, Phys. Rept. 100 (1983) 201 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G.P. Korchemsky and A.V. Radyushkin, Loop Space Formalism and Renormalization Group for the Infrared Asymptotics of QCD, Phys. Lett. B 171 (1986) 459 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett. B 313 (1993) 433 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A.M. Polyakov, Gauge Fields as Rings of Glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    R.A. Brandt, F. Neri and M.-a. Sato, Renormalization of Loop Functions for All Loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].ADSGoogle Scholar
  11. [11]
    I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [Erratum ibid. 111 (2013) 199905] [arXiv:0901.0722] [INSPIRE].
  13. [13]
    T. Becher and M. Neubert, On the Structure of Infrared Singularities of Gauge-Theory Amplitudes, JHEP 06 (2009) 081 [Erratum ibid. 1311 (2013) 024] [arXiv:0903.1126] [INSPIRE].
  14. [14]
    L.J. Dixon, E. Gardi and L. Magnea, On soft singularities at three loops and beyond, JHEP 02 (2010) 081 [arXiv:0910.3653] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Dasgupta and G.P. Salam, Event shapes in e + e annihilation and deep inelastic scattering, J. Phys. G 30 (2004) R143 [hep-ph/0312283] [INSPIRE].
  16. [16]
    G. Luisoni and S. Marzani, QCD resummation for hadronic final states, J. Phys. G 42 (2015) 103101 [arXiv:1505.04084] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    C.W. Bauer, S. Fleming, D. Pirjol and I.W. Stewart, An Effective field theory for collinear and soft gluons: Heavy to light decays, Phys. Rev. D 63 (2001) 114020 [hep-ph/0011336] [INSPIRE].
  18. [18]
    C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].
  19. [19]
    M. Beneke, A.P. Chapovsky, M. Diehl and T. Feldmann, Soft collinear effective theory and heavy to light currents beyond leading power, Nucl. Phys. B 643 (2002) 431 [hep-ph/0206152] [INSPIRE].
  20. [20]
    T. Becher, A. Broggio and A. Ferroglia, Lecture Notes in Physics. Vol. 896: Introduction to Soft-Collinear Effective Theory, Springer, Berlin Germany (2015).Google Scholar
  21. [21]
    T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Y.-T. Chien and M.D. Schwartz, Resummation of heavy jet mass and comparison to LEP data, JHEP 08 (2010) 058 [arXiv:1005.1644] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N 3 LL including power corrections, Phys. Rev. D 91 (2015) 094017 [arXiv:1411.6633] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Dasgupta and G.P. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].
  25. [25]
    M.D. Schwartz and H.X. Zhu, Nonglobal logarithms at three loops, four loops, five loops and beyond, Phys. Rev. D 90 (2014) 065004 [arXiv:1403.4949] [INSPIRE].ADSGoogle Scholar
  26. [26]
    A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].
  27. [27]
    H. Weigert, Nonglobal jet evolution at finite N c, Nucl. Phys. B 685 (2004) 321 [hep-ph/0312050] [INSPIRE].
  28. [28]
    Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite N c, Nucl. Phys. B 874 (2013) 808 [arXiv:1304.6930] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    Y. Hagiwara, Y. Hatta and T. Ueda, Hemisphere jet mass distribution at finite N c, Phys. Lett. B 756 (2016) 254 [arXiv:1507.07641] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, The two-loop hemisphere soft function, Phys. Rev. D 84 (2011) 045022 [arXiv:1105.3676] [INSPIRE].ADSGoogle Scholar
  31. [31]
    A. Hornig, C. Lee, I.W. Stewart, J.R. Walsh and S. Zuberi, Non-global Structure of the O(α s2) Dijet Soft Function, JHEP 08 (2011) 054 [arXiv:1105.4628] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    R. Kelley, M.D. Schwartz, R.M. Schabinger and H.X. Zhu, Jet Mass with a Jet Veto at Two Loops and the Universality of Non-Global Structure, Phys. Rev. D 86 (2012) 054017 [arXiv:1112.3343] [INSPIRE].ADSGoogle Scholar
  33. [33]
    A. von Manteuffel, R.M. Schabinger and H.X. Zhu, The Complete Two-Loop Integrated Jet Thrust Distribution In Soft-Collinear Effective Theory, JHEP 03 (2014) 139 [arXiv:1309.3560] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    K. Khelifa-Kerfa and Y. Delenda, Non-global logarithms at finite N c beyond leading order, JHEP 03 (2015) 094 [arXiv:1501.00475] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    A.J. Larkoski, I. Moult and D. Neill, Non-Global Logarithms, Factorization and the Soft Substructure of Jets, JHEP 09 (2015) 143 [arXiv:1501.04596] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D. Neill, The Edge of Jets and Subleading Non-Global Logs, arXiv:1508.07568 [INSPIRE].
  37. [37]
    S. Caron-Huot, Resummation of non-global logarithms and the BFKL equation, arXiv:1501.03754 [INSPIRE].
  38. [38]
    T. Becher, M. Neubert, L. Rothen and D.Y. Shao, Effective Field Theory for Jet Processes, Phys. Rev. Lett. 116 (2016) 192001 [arXiv:1508.06645] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y.-T. Chien, A. Hornig and C. Lee, Soft-collinear mode for jet cross sections in soft collinear effective theory, Phys. Rev. D 93 (2016) 014033 [arXiv:1509.04287] [INSPIRE].ADSGoogle Scholar
  40. [40]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].
  41. [41]
    V.A. Smirnov, Springer Tracts in Modern Physics. Vol. 177: Applied asymptotic expansions in momenta and masses, Springer, Heidelberg Germany (2002).Google Scholar
  42. [42]
    G.F. Sterman and S. Weinberg, Jets from Quantum Chromodynamics, Phys. Rev. Lett. 39 (1977) 1436 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Catani and M.H. Seymour, The Dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  44. [44]
    S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  45. [45]
    R.J. Hill and M. Neubert, Spectator interactions in soft collinear effective theory, Nucl. Phys. B 657 (2003) 229 [hep-ph/0211018] [INSPIRE].
  46. [46]
    T. Becher, R.J. Hill and M. Neubert, Soft collinear messengers: A New mode in soft collinear effective theory, Phys. Rev. D 69 (2004) 054017 [hep-ph/0308122] [INSPIRE].
  47. [47]
    C.W. Bauer, F.J. Tackmann, J.R. Walsh and S. Zuberi, Factorization and Resummation for Dijet Invariant Mass Spectra, Phys. Rev. D 85 (2012) 074006 [arXiv:1106.6047] [INSPIRE].ADSGoogle Scholar
  48. [48]
    T. Becher and G. Bell, NNLL Resummation for Jet Broadening, JHEP 11 (2012) 126 [arXiv:1210.0580] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    T. Becher, M. Neubert and B.D. Pecjak, Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering, JHEP 01 (2007) 076 [hep-ph/0607228] [INSPIRE].
  51. [51]
    S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
  52. [52]
    G. Kramer and B. Lampe, Two Jet Cross-Section in e + e Annihilation, Z. Phys. C 34 (1987) 497 [Erratum ibid. C 42 (1989) 504] [INSPIRE].
  53. [53]
    T. Matsuura and W.L. van Neerven, Second Order Logarithmic Corrections to the Drell-Yan Cross-section, Z. Phys. C 38 (1988) 623 [INSPIRE].ADSGoogle Scholar
  54. [54]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    D. Kang, O.Z. Labun and C. Lee, Equality of hemisphere soft functions for e + e , DIS and pp collisions at \( \mathcal{O}\left({\alpha}_s^2\right) \), Phys. Lett. B 748 (2015) 45 [arXiv:1504.04006] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    A.V. Belitsky, Two loop renormalization of Wilson loop for Drell-Yan production, Phys. Lett. B 442 (1998) 307 [hep-ph/9808389] [INSPIRE].
  57. [57]
    T. Becher and X. Garcia i Tormo, Factorization and resummation for transverse thrust, JHEP 06 (2015) 071 [arXiv:1502.04136] [INSPIRE].
  58. [58]
    P.F. Monni, T. Gehrmann and G. Luisoni, Two-Loop Soft Corrections and Resummation of the Thrust Distribution in the Dijet Region, JHEP 08 (2011) 010 [arXiv:1105.4560] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  59. [59]
    M. Dasgupta, F. Dreyer, G.P. Salam and G. Soyez, Small-radius jets to all orders in QCD, JHEP 04 (2015) 039 [arXiv:1411.5182] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    M. Sjodahl, Color structure for soft gluon resummation: A General recipe, JHEP 09 (2009) 087 [arXiv:0906.1121] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E t flow: A Case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].
  62. [62]
    S. Caron-Huot, private communication.Google Scholar
  63. [63]
    S. Caron-Huot and M. Herranen, High-energy evolution to three loops, arXiv:1604.07417 [INSPIRE].
  64. [64]
    J.R. Walsh and S. Zuberi, Factorization Constraints on Jet Substructure, arXiv:1110.5333 [INSPIRE].
  65. [65]
    R. Kelley, J.R. Walsh and S. Zuberi, Disentangling Clustering Effects in Jet Algorithms, arXiv:1203.2923 [INSPIRE].
  66. [66]
    A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Gangal, M. Stahlhofen and F.J. Tackmann, Rapidity-Dependent Jet Vetoes, Phys. Rev. D 91 (2015) 054023 [arXiv:1412.4792] [INSPIRE].ADSGoogle Scholar
  68. [68]
    I.Z. Rothstein and I.W. Stewart, An Effective Field Theory for Forward Scattering and Factorization Violation, JHEP 08 (2016) 025 [arXiv:1601.04695] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    A. Idilbi and A. Majumder, Extending Soft-Collinear-Effective-Theory to describe hard jets in dense QCD media, Phys. Rev. D 80 (2009) 054022 [arXiv:0808.1087] [INSPIRE].ADSGoogle Scholar
  70. [70]
    J.F. Donoghue and D. Wyler, On Regge kinematics in SCET, Phys. Rev. D 81 (2010) 114023 [arXiv:0908.4559] [INSPIRE].ADSGoogle Scholar
  71. [71]
    C.W. Bauer, B.O. Lange and G. Ovanesyan, On Glauber modes in Soft-Collinear Effective Theory, JHEP 07 (2011) 077 [arXiv:1010.1027] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
    J.F. Donoghue, B.K. El-Menoufi and G. Ovanesyan, Regge behavior in effective field theory, Phys. Rev. D 90 (2014) 096009 [arXiv:1405.1731] [INSPIRE].ADSGoogle Scholar
  73. [73]
    S. Fleming, The role of Glauber exchange in soft collinear effective theory and the Balitsky-Fadin-Kuraev-Lipatov Equation, Phys. Lett. B 735 (2014) 266 [arXiv:1404.5672] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP 08 (2006) 059 [hep-ph/0604094] [INSPIRE].
  75. [75]
    J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: Colour basis independent calculation, JHEP 09 (2008) 128 [arXiv:0808.1269] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Thomas Becher
    • 1
    Email author
  • Matthias Neubert
    • 2
    • 3
  • Lorena Rothen
    • 4
  • Ding Yu Shao
    • 1
  1. 1.Albert Einstein Center for Fundamental Physics, Institut für Theoretische PhysikUniversität BernBernSwitzerland
  2. 2.PRISMA Cluster of Excellence & Mainz Institute for Theoretical PhysicsJohannes Gutenberg UniversityMainzGermany
  3. 3.Department of PhysicsLEPP, Cornell UniversityIthacaU.S.A.
  4. 4.Theory Group, Deutsches Elektronen-Synchrotron (DESY)HamburgGermany

Personalised recommendations