Composite scalars at the LHC: the Higgs, the Sextet and the Octet

Abstract

We present a phenomenological theory of scalar particles that transform as a sextet and an octet of QCD interactions. These particles may arise as light bound states of a fundamental dynamics giving rise to a composite Higgs boson and partial compositeness for the top. As a concrete example, we discuss an explicit UV completion based on the SU(4)/Sp(4) coset, where QCD colour is carried by additional fundamental fermions charged under the confining gauge group. Top partners, as well as potentially even lighter coloured scalars, arise as bound states of the coloured fermions. We study production and detection at LHC Run I and II of the octet and sextet, setting lower limits on masses and couplings to Standard Model particles using existing 8 TeV analyses. We finally explore prospects for the ongoing 13 TeV Run II: we focus on final states with two same sign leptons, that have the potential to discriminate the sextet.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D 13 (1976) 974 [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    S. Weinberg, Implications of Dynamical Symmetry Breaking: An Addendum, Phys. Rev. D 19 (1979) 1277 [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg-Salam Theory, Phys. Rev. D 20 (1979) 2619 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    D.B. Kaplan and H. Georgi, SU(2) x U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  5. [5]

    D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  6. [6]

    H. Georgi, D.B. Kaplan and P. Galison, Calculation of the Composite Higgs Mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].

    Article  ADS  Google Scholar 

  7. [7]

    T. Banks, CONSTRAINTS ON SU(2) x U(1) BREAKING BY VACUUM MISALIGNMENT, Nucl. Phys. B 243 (1984) 125 [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    Article  ADS  Google Scholar 

  9. [9]

    M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].

    Article  ADS  Google Scholar 

  10. [10]

    R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  11. [11]

    K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  12. [12]

    K. Agashe and R. Contino, The Minimal composite Higgs model and electroweak precision tests, Nucl. Phys. B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [INSPIRE].

    Article  ADS  Google Scholar 

  14. [14]

    A.V. Manohar and M.B. Wise, Modifications to the properties of the Higgs boson, Phys. Lett. B 636 (2006) 107 [hep-ph/0601212] [INSPIRE].

    Article  ADS  Google Scholar 

  15. [15]

    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  16. [16]

    B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    G. Panico and A. Wulzer, The Discrete Composite Higgs Model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].

    Article  ADS  Google Scholar 

  19. [19]

    S. De Curtis, M. Redi and A. Tesi, The 4D Composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].

    Article  Google Scholar 

  20. [20]

    R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light DynamicalHiggs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].

  21. [21]

    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. [22]

    E. Katz, A.E. Nelson and D.G.E. Walker, The Intermediate Higgs, JHEP 08 (2005) 074 [hep-ph/0504252] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. [23]

    B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].

    Article  ADS  Google Scholar 

  24. [24]

    J. Mrazek, A. Pomarol, R. Rattazzi, M. Redi, J. Serra and A. Wulzer, The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].

    Article  ADS  Google Scholar 

  25. [25]

    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    C. Anastasiou, E. Furlan and J. Santiago, Realistic Composite Higgs Models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    G. Cacciapaglia and F. Sannino, Fundamental Composite (Goldstone) Higgs Dynamics, JHEP 04 (2014) 111 [arXiv:1402.0233] [INSPIRE].

    Article  ADS  Google Scholar 

  28. [28]

    T.A. Ryttov and F. Sannino, Ultra Minimal Technicolor and its Dark Matter TIMP, Phys. Rev. D 78 (2008) 115010 [arXiv:0809.0713] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal Conformal Technicolor and Precision Electroweak Tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].

    Google Scholar 

  30. [30]

    J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE].

    Article  ADS  Google Scholar 

  31. [31]

    G. Ferretti and D. Karateev, Fermionic UV completions of Composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE].

    Article  ADS  Google Scholar 

  32. [32]

    G. Ferretti, UV Completions of Partial Compositeness: The Case for a SU(4) Gauge Group, JHEP 06 (2014) 142 [arXiv:1404.7137] [INSPIRE].

    Article  ADS  Google Scholar 

  33. [33]

    L. Vecchi, Adangerous irrelevantUV-completion of the composite Higgs, arXiv:1506.00623 [INSPIRE].

  34. [34]

    A. Hietanen, R. Lewis, C. Pica and F. Sannino, Fundamental Composite Higgs Dynamics on the Lattice: SU(2) with Two Flavors, JHEP 07 (2014) 116 [arXiv:1404.2794] [INSPIRE].

    Article  ADS  Google Scholar 

  35. [35]

    A. Arbey, G. Cacciapaglia, H. Cai, A. Deandrea, S. Le Corre and F. Sannino, Fundamental Composite Electroweak Dynamics: Status at the LHC, arXiv:1502.04718 [INSPIRE].

  36. [36]

    B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].

    Article  ADS  Google Scholar 

  37. [37]

    G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, arXiv:1506.01961 [INSPIRE].

  38. [38]

    B. Gripaios, Composite Leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [INSPIRE].

    Article  ADS  Google Scholar 

  39. [39]

    R. Lewis, C. Pica and F. Sannino, Light Asymmetric Dark Matter on the Lattice: SU(2) Technicolor with Two Fundamental Flavors, Phys. Rev. D 85 (2012) 014504 [arXiv:1109.3513] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    A. Hietanen, R. Lewis, C. Pica and F. Sannino, Composite Goldstone Dark Matter: Experimental Predictions from the Lattice, JHEP 12 (2014) 130 [arXiv:1308.4130] [INSPIRE].

    Article  ADS  Google Scholar 

  41. [41]

    F. Sannino, Conformal Windows of SP(2N) and SO(N) Gauge Theories, Phys. Rev. D 79 (2009) 096007 [arXiv:0902.3494] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    S. Raby, S. Dimopoulos and L. Susskind, Tumbling Gauge Theories, Nucl. Phys. B 169 (1980) 373 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  43. [43]

    G. Cacciapaglia, H. Cai, T. Flacke, S.J. Lee, A. Parolini and H. Serôdio, Anarchic Yukawas and top partial compositeness: the flavour of a successful marriage, JHEP 06 (2015) 085 [arXiv:1501.03818] [INSPIRE].

    Article  ADS  Google Scholar 

  44. [44]

    O. Matsedonskyi, G. Panico and A. Wulzer, On the Interpretation of Top Partners Searches, JHEP 12 (2014) 097 [arXiv:1409.0100] [INSPIRE].

    Article  ADS  Google Scholar 

  45. [45]

    M. Backović, T. Flacke, S.J. Lee and G. Perez, LHC Top Partner Searches Beyond the 2 TeV Mass Region, JHEP 09 (2015) 022 [arXiv:1409.0409] [INSPIRE].

    Article  Google Scholar 

  46. [46]

    R. Casalbuoni, S. De Curtis, D. Dominici and R. Gatto, Effective Weak Interaction Theory with Possible New Vector Resonance from a Strong Higgs Sector, Phys. Lett. B 155 (1985) 95 [INSPIRE].

    Article  ADS  Google Scholar 

  47. [47]

    R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081 [arXiv:1109.1570] [INSPIRE].

    Article  ADS  Google Scholar 

  48. [48]

    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs Sketch, JHEP 11 (2012) 003 [arXiv:1205.4032] [INSPIRE].

    Article  ADS  Google Scholar 

  49. [49]

    H. Cai, Higgs decay into a diphoton in the composite Higgs model, Phys. Rev. D 88 (2013) 035018 [arXiv:1303.3833] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Heavy Vector Triplets: Bridging Theory and Data, JHEP 09 (2014) 060 [arXiv:1402.4431] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. [51]

    D. Greco and D. Liu, Hunting composite vector resonances at the LHC: naturalness facing data, JHEP 12 (2014) 126 [arXiv:1410.2883] [INSPIRE].

    Article  ADS  Google Scholar 

  52. [52]

    H. Cai, Higgs-Z-photon Coupling from Effect of Composite Resonances, JHEP 04 (2014) 052 [arXiv:1306.3922] [INSPIRE].

    Article  ADS  Google Scholar 

  53. [53]

    C.-Y. Chen, A. Freitas, T. Han and K.S.M. Lee, Heavy Color-Octet Particles at the LHC, JHEP 05 (2015) 135 [arXiv:1410.8113] [INSPIRE].

    Article  ADS  Google Scholar 

  54. [54]

    T. Han, I. Lewis and Z. Liu, Colored Resonant Signals at the LHC: Largest Rate and Simplest Topology, JHEP 12 (2010) 085 [arXiv:1010.4309] [INSPIRE].

    Article  ADS  Google Scholar 

  55. [55]

    H. Zhang, E.L. Berger, Q.-H. Cao, C.-R. Chen and G. Shaughnessy, Color Sextet Vector Bosons and Same-Sign Top Quark Pairs at the LHC, Phys. Lett. B 696 (2011) 68 [arXiv:1009.5379] [INSPIRE].

    Article  ADS  Google Scholar 

  56. [56]

    ATLAS collaboration, Search for strongly produced superpartners in final states with two same sign leptons with the ATLAS detector using 21 fb-1 of proton-proton collisions at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-007 (2013).

  57. [57]

    ATLAS collaboration, Search for supersymmetry at \( \sqrt{s}=8 \) TeV in final states with jets and two same-sign leptons or three leptons with the ATLAS detector, JHEP 06 (2014) 035 [arXiv:1404.2500] [INSPIRE].

  58. [58]

    ATLAS collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets using 20.1 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, ATLAS-CONF-2013-061 (2013).

  59. [59]

    ATLAS collaboration, Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS experiment, JHEP 10 (2013) 130 [Erratum ibid. 1401 (2014) 109] [arXiv:1308.1841] [INSPIRE].

  60. [60]

    CMS collaboration, Search for new physics in events with same-sign dileptons and jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2014) 163 [Erratum ibid. 1501 (2015) 014] [arXiv:1311.6736] [INSPIRE].

  61. [61]

    CMS collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s}=8 \) TeV in events with a single lepton, large jet multiplicity and multiple b jets, Phys. Lett. B 733 (2014) 328 [arXiv:1311.4937] [INSPIRE].

  62. [62]

    CMS Collaboration, Search for supersymmetry in pp collisions at \( \sqrt{s}=8 \) TeV in events with three leptons and at least one b-tagged jet, CMS-PAS-SUS-13-008 (Search for supersymmetry in pp collisions at \( \sqrt{s}=8 \) TeV in events with three leptons and at least one b-tagged jet).

  63. [63]

    CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE].

  64. [64]

    C. Bini, R. Contino and N. Vignaroli, Heavy-light decay topologies as a new strategy to discover a heavy gluon, JHEP 01 (2012) 157 [arXiv:1110.6058] [INSPIRE].

    Article  ADS  Google Scholar 

  65. [65]

    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A Custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

    Article  ADS  Google Scholar 

  66. [66]

    J. Serra, Beyond the Minimal Top Partner Decay, JHEP 09 (2015) 176 [arXiv:1506.05110] [INSPIRE].

    Article  ADS  Google Scholar 

  67. [67]

    A. Anandakrishnan, J.H. Collins, M. Farina, E. Kuflik and M. Perelstein, Odd Top Partners at the LHC, arXiv:1506.05130 [INSPIRE].

  68. [68]

    G.F. Giudice, B. Gripaios and R. Sundrum, Flavourful Production at Hadron Colliders, JHEP 08 (2011) 055 [arXiv:1105.3161] [INSPIRE].

    Article  ADS  Google Scholar 

  69. [69]

    L. Calibbi, Z. Lalak, S. Pokorski and R. Ziegler, Universal Constraints on Low-Energy Flavour Models, JHEP 07 (2012) 004 [arXiv:1204.1275] [INSPIRE].

    Article  ADS  Google Scholar 

  70. [70]

    G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].

    Article  ADS  Google Scholar 

  71. [71]

    F. Bazzocchi, U. De Sanctis, M. Fabbrichesi and A. Tonero, Quark contact interactions at the LHC, Phys. Rev. D 85 (2012) 114001 [arXiv:1111.5936] [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    O. Domenech, A. Pomarol and J. Serra, Probing the SM with Dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].

    ADS  Google Scholar 

  73. [73]

    Super-Kamiokande collaboration, K. Abe et al., The Search for \( n-\overline{n} \) oscillation in Super-Kamiokande I, Phys. Rev. D 91 (2015) 072006 [arXiv:1109.4227] [INSPIRE].

  74. [74]

    R.N. Mohapatra, Neutron-Anti-Neutron Oscillation: Theory and Phenomenology, J. Phys. G 36 (2009) 104006 [arXiv:0902.0834] [INSPIRE].

    Article  ADS  Google Scholar 

  75. [75]

    C.-R. Chen, W. Klemm, V. Rentala and K. Wang, Color Sextet Scalars at the CERN Large Hadron Collider, Phys. Rev. D 79 (2009) 054002 [arXiv:0811.2105] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    T. Han, I. Lewis and T. McElmurry, QCD Corrections to Scalar Diquark Production at Hadron Colliders, JHEP 01 (2010) 123 [arXiv:0909.2666] [INSPIRE].

    Article  ADS  Google Scholar 

  77. [77]

    E.L. Berger, Q.-H. Cao, C.-R. Chen, G. Shaughnessy and H. Zhang, Color Sextet Scalars in Early LHC Experiments, Phys. Rev. Lett. 105 (2010) 181802 [arXiv:1005.2622] [INSPIRE].

    Article  ADS  Google Scholar 

  78. [78]

    M. Battaglia and G. Servant, Four-top production and \( t\overline{t} \) + missing energy events at multi TeV e + e colliders, Nuovo Cim. C 033N2 (2010) 203 [arXiv:1005.4632] [INSPIRE].

  79. [79]

    T. Gregoire, E. Katz and V. Sanz, Four top quarks in extensions of the standard model, Phys. Rev. D 85 (2012) 055024 [arXiv:1101.1294] [INSPIRE].

    ADS  Google Scholar 

  80. [80]

    G. Cacciapaglia, R. Chierici, A. Deandrea, L. Panizzi, S. Perries and S. Tosi, Four tops on the real projective plane at LHC, JHEP 10 (2011) 042 [arXiv:1107.4616] [INSPIRE].

    Article  ADS  Google Scholar 

  81. [81]

    J.A. Aguilar-Saavedra and J. Santiago, Four tops and the \( t\overline{t} \) forward-backward asymmetry, Phys. Rev. D 85 (2012) 034021 [arXiv:1112.3778] [INSPIRE].

    ADS  Google Scholar 

  82. [82]

    A. Deandrea and N. Deutschmann, Multi-tops at the LHC, JHEP 08 (2014) 134 [arXiv:1405.6119] [INSPIRE].

    Article  ADS  Google Scholar 

  83. [83]

    ATLAS collaboration, Search for exotic same-sign dilepton signatures (bquark, T 5/3 and four top quarks production) in 4.7/fb of pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, ATLAS-CONF-2012-130 (2012).

  84. [84]

    CMS collaboration, Search for standard model four top quark production at 8 TeV in the lepton + jets channel, CMS-PAS-TOP-13-012 (2013).

  85. [85]

    ATLAS collaboration, Search for anomalous production of events with same-sign dileptons and b jets in 14.3 fb −1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-051 (2013).

  86. [86]

    CMS collaboration, Search for Standard Model Production of Four Top Quarks in the Lepton + Jets Channel in pp Collisions at \( \sqrt{s}=8 \) TeV, JHEP 11 (2014) 154 [arXiv:1409.7339] [INSPIRE].

  87. [87]

    ATLAS collaboration, Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2015) 150 [arXiv:1504.04605] [INSPIRE].

  88. [88]

    ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE].

  89. [89]

    CMS collaboration, Search for new physics in events with same-sign dileptons and b jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 03 (2013) 037 [Erratum ibid. 1307 (2013) 041] [arXiv:1212.6194] [INSPIRE].

  90. [90]

    CMS collaboration, Search for new physics in events with same-sign dileptons and jets in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2014) 163 [Erratum ibid. 1501 (2015) 014] [arXiv:1311.6736] [INSPIRE].

  91. [91]

    C. Degrande, B. Fuks, V. Hirschi, J. Proudom and H.-S. Shao, Automated next-to-leading order predictions for new physics at the LHC: the case of colored scalar pair production, Phys. Rev. D 91 (2015) 094005 [arXiv:1412.5589] [INSPIRE].

    ADS  Google Scholar 

  92. [92]

    J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  93. [93]

    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  94. [94]

    ATLAS collaboration, A search for \( t\overline{t} \) resonances using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 148 [arXiv:1505.07018] [INSPIRE].

  95. [95]

    CMS collaboration, Search for Resonant \( \mathrm{t}\overline{\mathrm{t}} \) Production in Proton-Proton Collisions at \( \sqrt{s}=8 \) TeV, arXiv:1506.03062 [INSPIRE].

  96. [96]

    A. Barr, C. Lester and P. Stephens, m(T2): The Truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].

    Article  ADS  Google Scholar 

  97. [97]

    H.-C. Cheng and Z. Han, Minimal Kinematic Constraints and m(T2), JHEP 12 (2008) 063 [arXiv:0810.5178] [INSPIRE].

    Article  ADS  Google Scholar 

  98. [98]

    L. Sonnenschein, Analytical solution of ttbar dilepton equations, Phys. Rev. D 73 (2006) 054015 [Erratum ibid. D 78 (2008) 079902] [hep-ph/0603011] [INSPIRE].

  99. [99]

    Y. Bai and Z. Han, Top-antitop and Top-top Resonances in the Dilepton Channel at the CERN LHC, JHEP 04 (2009) 056 [arXiv:0809.4487] [INSPIRE].

    Article  ADS  Google Scholar 

  100. [100]

    G. Mahlon and S.J. Parke, Spin Correlation Effects in Top Quark Pair Production at the LHC, Phys. Rev. D 81 (2010) 074024 [arXiv:1001.3422] [INSPIRE].

    ADS  Google Scholar 

  101. [101]

    W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC., Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [INSPIRE].

    Article  ADS  Google Scholar 

  102. [102]

    M. Jezabek and J.H. Kuhn, Lepton Spectra from Heavy Quark Decay, Nucl. Phys. B 320 (1989) 20 [INSPIRE].

    Article  ADS  Google Scholar 

  103. [103]

    G. Mahlon and S.J. Parke, Angular correlations in top quark pair production and decay at hadron colliders, Phys. Rev. D 53 (1996) 4886 [hep-ph/9512264] [INSPIRE].

    ADS  Google Scholar 

  104. [104]

    T. Stelzer and S. Willenbrock, Single top quark production via \( q\overline{q}\to t\overline{b} \), Phys. Lett. B 357 (1995) 125 [hep-ph/9505433] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Flacke.

Additional information

ArXiv ePrint: 1507.02283

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cacciapaglia, G., Cai, H., Deandrea, A. et al. Composite scalars at the LHC: the Higgs, the Sextet and the Octet. J. High Energ. Phys. 2015, 201 (2015). https://doi.org/10.1007/JHEP11(2015)201

Download citation

Keywords

  • Beyond Standard Model
  • Technicolor and Composite Models
  • Global Symmetries