Journal of High Energy Physics

, 2015:135 | Cite as

Universal hydrodynamic flow in holographic planar shock collisions

  • Paul M. Chesler
  • Niki Kilbertus
  • Wilke van der Schee
Open Access
Regular Article - Theoretical Physics

Abstract

We study the collision of planar shock waves in AdS5 as a function of shock profile. In the dual field theory the shock waves describe planar sheets of energy whose collision results in the formation of a plasma which behaves hydrodynamically at late times. We find that the post-collision stress tensor near the light cone exhibits transient non-universal behavior which depends on both the shock width and the precise functional form of the shock profile. However, over a large range of shock widths, including those which yield qualitative different behavior near the future light cone, and for different shock profiles, we find universal behavior in the subsequent hydrodynamic evolution. Additionally, we compute the rapidity distribution of produced particles and find it to be well described by a Gaussian.

Keywords

Quark-Gluon Plasma Gauge-gravity correspondence AdS-CFT Correspondence Holography and quark-gluon plasmas 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].CrossRefADSGoogle Scholar
  2. [2]
    P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  5. [5]
    P. Arnold, P. Romatschke and W. van der Schee, Absence of a local rest frame in far from equilibrium quantum matter, JHEP 10 (2014) 110 [arXiv:1408.2518] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS 5, JHEP 08 (2008) 027 [arXiv:0803.3226] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    W. van der Schee, Gravitational collisions and the quark-gluon plasma, arXiv:1407.1849 [INSPIRE].
  11. [11]
    J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, Longitudinal Coherence in a Holographic Model of Asymmetric Collisions, Phys. Rev. Lett. 112 (2014) 221602 [arXiv:1312.2956] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    W. van der Schee, P. Romatschke and S. Pratt, Fully Dynamical Simulation of Central Nuclear Collisions, Phys. Rev. Lett. 111 (2013) 222302 [arXiv:1307.2539] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    W. van der Schee, Holographic thermalization with radial flow, Phys. Rev. D 87 (2013) 061901 [arXiv:1211.2218] [INSPIRE].ADSGoogle Scholar
  14. [14]
    P.M. Chesler and L.G. Yaffe, Holography and off-center collisions of localized shock waves, JHEP 10 (2015) 070 [arXiv:1501.04644] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    F. Cooper and G. Frye, Comment on the Single Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production, Phys. Rev. D 10 (1974) 186 [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  18. [18]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MATHMathSciNetCrossRefGoogle Scholar
  19. [19]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MATHMathSciNetADSGoogle Scholar
  20. [20]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    S. Lin and E. Shuryak, Grazing Collisions of Gravitational Shock Waves and Entropy Production in Heavy Ion Collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [INSPIRE].ADSGoogle Scholar
  23. [23]
    L.D. Landau, On the multiparticle production in high-energy collisions, Izv. Akad. Nauk Ser. Fiz. 17 (1953) 51 [INSPIRE].Google Scholar
  24. [24]
    C.-Y. Wong, Landau Hydrodynamics Revisited, Phys. Rev. C 78 (2008) 054902 [arXiv:0808.1294] [INSPIRE].ADSGoogle Scholar
  25. [25]
    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    M. Luzum and P. Romatschke, Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. C 78 (2008) 034915 [Erratum ibid. C 79 (2009) 039903] [arXiv:0804.4015] [INSPIRE].
  27. [27]
    BRAHMS collaboration, I.G. Bearden et al., Charged meson rapidity distributions in central Au+Au collisions at \( \sqrt{s_{NN}}=200 \) -GeV, Phys. Rev. Lett. 94 (2005) 162301 [nucl-ex/0403050] [INSPIRE].
  28. [28]
    P. Steinberg, Landau hydrodynamics and RHIC phenomena, Acta Phys. Hung. A 24 (2005) 51 [nucl-ex/0405022] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    P.M. Chesler, Colliding shockwaves and hydrodynamics in extreme conditions, arXiv:1506.02209 [INSPIRE].
  30. [30]
    J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling Heavy Ion Collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric Collision of Two Shock Waves in AdS 5, JHEP 05 (2009) 060 [arXiv:0902.3046] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Paul M. Chesler
    • 1
  • Niki Kilbertus
    • 2
  • Wilke van der Schee
    • 3
  1. 1.Department of PhysicsHarvard UniversityCambridgeU.S.A.
  2. 2.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany
  3. 3.Center for Theoretical PhysicsMITCambridgeU.S.A.

Personalised recommendations