Advertisement

Journal of High Energy Physics

, 2015:93 | Cite as

Wilson surface observables from equivariant cohomology

  • Anton Alekseev
  • Olga ChekeresEmail author
  • Pavel Mnev
Open Access
Regular Article - Theoretical Physics

Abstract

Wilson lines in gauge theories admit several path integral descriptions. The first one (due to Alekseev-Faddeev-Shatashvili) uses path integrals over coadjoint orbits. The second one (due to Diakonov-Petrov) replaces a 1-dimensional path integral with a 2-dimensional topological σ-model. We show that this σ-model is defined by the equivariant extension of the Kirillov symplectic form on the coadjoint orbit. This allows to define the corresponding observable on arbitrary 2-dimensional surfaces, including closed surfaces. We give a new path integral presentation of Wilson lines in terms of Poisson σ-models, and we test this presentation in the framework of the 2-dimensional Yang-Mills theory. On a closed surface, our Wilson surface observable turns out to be nontrivial for G non-simply connected (and trivial for G simply connected), in particular we study in detail the cases G=U(1) and G=SO(3).

Keywords

Wilson ’t Hooft and Polyakov loops Differential and Algebraic Geometry Sigma Models Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Alekseev, L.D. Faddeev and S.L. Shatashvili, Quantization of symplectic orbits of compact Lie groups by means of the functional integral, J. Geom. Phys. 5 (1988) 391 [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  2. [2]
    D. Diakonov and V. Petrov, Non-Abelian Stokes theorem and quark-monopole interaction, published version in Nonperturbative approaches to QCD, Proceedings of the Internat. workshop at ECT, Trento Italy July 10-29 1995, D. Diakonov ed., Petersburg Nucl. Phys. Inst., v. Gatchina Russia (1995) [hep-th/9606104] [INSPIRE].
  3. [3]
    C.L. Kane and E.J. Mele, Z 2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95 (2005) 146802 [cond-mat/0506581] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    S. Ryu, C. Mudry, H. Obuse and A. Furusaki, Z 2 topological term, the global anomaly, and the two-dimensional symplectic symmetry class of Anderson localization, Phys. Rev. Lett. 99 (2007) 116601 [cond-mat/0702529].CrossRefADSGoogle Scholar
  5. [5]
    D. Carpentier, P. Delplace, M. Fruchart, K. Gawedzki and C. Tauber, Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals, Nucl. Phys. B 896 (2015) 779 [arXiv:1503.04157] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    D. Carpentier, P. Delplace, M. Fruchart and K. Gawedzki, Topological index for periodically driven time-reversal invariant 2D systems, Phys. Rev. Lett. 114 (2015) 106806 [arXiv:1407.7747].CrossRefADSGoogle Scholar
  7. [7]
    A. Kapustin, Bosonic topological insulators and paramagnets: a view from cobordisms, arXiv:1404.6659 [INSPIRE].
  8. [8]
    O.J. Ganor, Six-dimensional tensionless strings in the large-N limit, Nucl. Phys. B 489 (1997) 95 [hep-th/9605201] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    B. Chen, W. He, J.-B. Wu and L. Zhang, M 5-branes and Wilson surfaces, JHEP 08 (2007) 067 [arXiv:0707.3978] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    I. Chepelev, Non-Abelian Wilson surfaces, JHEP 02 (2002) 013 [hep-th/0111018] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    A.S. Cattaneo and C.A. Rossi, Wilson surfaces and higher dimensional knot invariants, Commun. Math. Phys. 256 (2005) 513 [math-ph/0210037] [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  12. [12]
    D.S. Freed, Classical Chern-Simons theory. Part 1, Adv. Math. 113 (1995) 237 [hep-th/9206021] [INSPIRE].zbMATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    D.S. Freed, Classical Chern-Simons theory, part 2, Houston J. Math. 28 (2002) 293.zbMATHMathSciNetGoogle Scholar
  14. [14]
    K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].ADSGoogle Scholar
  15. [15]
    R. Giles, The reconstruction of gauge potentials from Wilson loops, Phys. Rev. D 24 (1981) 2160 [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].zbMATHCrossRefADSGoogle Scholar
  17. [17]
    A.A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics 64, America Mathematical Society, Providence RI U.S.A. (2004).Google Scholar
  18. [18]
    D.P. Zhelobenko, Compact Lie groups and their representations, Translations of Mathematical Monographs 40, American Mathematical Society, Providence RI U.S.A. (1978).Google Scholar
  19. [19]
    R. Bott, The geometry and representation theory of compact Lie groups, in Representation theory of Lie groups, London Mathematical Society Lecture Note Series 34, Cambridge University Press, Cambridge U.K. (1979).Google Scholar
  20. [20]
    A.P. Balachandran, S. Borchardt and A. Stern, Lagrangian and Hamiltonian descriptions of Yang-Mills particles, Phys. Rev. D 17 (1978) 3247 [INSPIRE].ADSGoogle Scholar
  21. [21]
    H.B. Nielsen and D. Rohrlich, A path integral to quantize spin, Nucl. Phys. B 299 (1988) 471 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    D. Diakonov and V. Yu. Petrov, A formula for the Wilson loop, Phys. Lett. B 224 (1989) 131 [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    C. Beasley, Localization for Wilson loops in Chern-Simons theory, Adv. Theor. Math. Phys. 17 (2013) 1 [arXiv:0911.2687] [INSPIRE].zbMATHMathSciNetCrossRefGoogle Scholar
  25. [25]
    M.F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984) 1 [INSPIRE].zbMATHMathSciNetCrossRefGoogle Scholar
  26. [26]
    V.W. Guillemin and S. Sternberg, Supersymmetry and equivariant de Rham theory, Springer, Berlin Heidelberg Germany (1991).Google Scholar
  27. [27]
    N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer, Berlin Heidelberg Germany (2004).Google Scholar
  28. [28]
    E. Meinrenken, Equivariant cohomology and the Cartan model, http://www.math.toronto.edu/mein/research/enc.pdf.
  29. [29]
    N. Ikeda, Two-dimensional gravity and nonlinear gauge theory, Annals Phys. 235 (1994) 435 [hep-th/9312059] [INSPIRE].zbMATHCrossRefADSGoogle Scholar
  30. [30]
    P. Schaller and T. Strobl, Poisson structure induced (topological) field theories, Mod. Phys. Lett. A 9 (1994) 3129 [hep-th/9405110] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    P. Schaller and T. Strobl, A brief introduction to Poisson σ-models, Lect. Notes Phys. 469 (1996) 321 [hep-th/9507020] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    D. Birmingham, M. Blau, M. Rakowski and G. Thompson, Topological field theory, Phys. Rept. 209 (1991) 129 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  33. [33]
    J. Cheeger and J. Simons, Differential characters and geometric invariants, in Geometry and topology, Proceedings of the Special Year held at the University of Maryland, College Park 1983-1984, J. Alexander and J. Harer eds., Springer, Berlin Heidelberg Germany Lect. Notes Math. 1167 (1985) 50.Google Scholar
  34. [34]
    S.-S. Chern and J. Simons, Characteristic forms and geometric invariants, Annals Math. 99 (1974) 48 [INSPIRE].zbMATHMathSciNetCrossRefGoogle Scholar
  35. [35]
    R. Dijkgraaf and E. Witten, Topological gauge theories and group cohomology, Commun. Math. Phys. 129 (1990) 393 [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  36. [36]
    J.W. Milnor and J.D. Stasheff, Characteristic classes, Princeton University Press, Princeton U.S.A. (1974).zbMATHGoogle Scholar
  37. [37]
    A.A. Migdal, Recursion equations in gauge theories, Sov. Phys. JETP 42 (1975) 413 [Zh. Eksp. Teor. Fiz. 69 (1975) 810] [INSPIRE].
  38. [38]
    N.E. Bralic, Exact computation of loop averages in two-dimensional Yang-Mills theory, Phys. Rev. D 22 (1980) 3090 [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    V.A. Kazakov and I.K. Kostov, Nonlinear strings in two-dimensional U(∞) gauge theory, Nucl. Phys. B 176 (1980) 199 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    V.A. Kazakov and I.K. Kostov, Computation of the Wilson loop functional in two-dimensional U(∞) lattice gauge theory, Phys. Lett. B 105 (1981) 453 [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    V.A. Kazakov, Wilson loop average for an arbitrary contour in two-dimensional U(N ) gauge theory, Nucl. Phys. B 179 (1981) 283 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  42. [42]
    L. Gross, C. King and A. Sengupta, Two-dimensional Yang-Mills theory via stochastic differential equations, Annals Phys. 194 (1989) 65 [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  43. [43]
    B.E. Rusakov, Loop averages and partition functions in U(N ) gauge theory on two-dimensional manifolds, Mod. Phys. Lett. A 5 (1990) 693 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  44. [44]
    D.S. Fine, Quantum Yang-Mills on the two-sphere, Commun. Math. Phys. 134 (1990) 273 [INSPIRE].zbMATHCrossRefADSGoogle Scholar
  45. [45]
    D.S. Fine, Quantum Yang-Mills on a Riemann surface, Commun. Math. Phys. 140 (1991) 321 [INSPIRE].zbMATHCrossRefADSGoogle Scholar
  46. [46]
    M. Blau and G. Thompson, Quantum Yang-Mills theory on arbitrary surfaces, Int. J. Mod. Phys. A 7 (1992) 3781 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys. 141 (1991) 153 [INSPIRE].zbMATHCrossRefADSGoogle Scholar
  48. [48]
    S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2D Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41 (1995) 184 [hep-th/9411210] [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  49. [49]
    E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 [hep-th/9204083] [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  50. [50]
    N. Steenrod, The topology of fiber bundles, Princeton Mathematical Series 14, Princeton University Press, Princeton U.S.A. (1951).Google Scholar
  51. [51]
    J. Fuchs, C. Schweigert and A. Valentino, A geometric approach to boundaries and surface defects in Dijkgraaf-Witten theories, Commun. Math. Phys. 332 (2014) 981 [arXiv:1307.3632] [INSPIRE].zbMATHMathSciNetCrossRefADSGoogle Scholar
  52. [52]
    A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge U.K. (2002).zbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of GenevaGenève 4Switzerland
  2. 2.Max Planck Institute for MathematicsBonnGermany
  3. 3.St. Petersburg Department of V.A. Steklov Institute of Mathematics of the Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations