Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Detecting underabundant neutralinos

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 09 November 2015
  • volume 2015, Article number: 53 (2015)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Detecting underabundant neutralinos
Download PDF
  • M. Badziak1,
  • A. Delgado2,3,
  • M. Olechowski1,
  • S. Pokorski1 &
  • …
  • K. Sakurai4 
  • 324 Accesses

  • 34 Citations

  • 3 Altmetric

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

The electroweak sector may play a crucial role in discovering supersymmetry. We systematically investigate the patterns of the MSSM-like electroweakinos, when the neutralino relic abundance Ωχ h 2 ≤ 0.12, that is, also admitting for multi-component Dark Matter, in a broad range of the parameter space. We find that for a very large range of parameters the Direct Detection experiments are/will be sensitive to underabundant neutralinos, in spite of the strong rescaling of the flux factor. The second general conclusion is that the bound Ωχ h 2 ≤ 0.12 together with the LUX (XENON1T) limits for the neutralino spin independent scattering cross sections constrain the electroweakino spectrum so that the mass differences between the NLSP and the LSP are smaller than 40 (10) GeV, respectively, with important implications for the collider searches. The future Direct Detection experiments and the high luminosity LHC run will probe almost the entire range of the LSP and NLSP mass spectrum that is consistent with the bound Ωχ h 2 ≤ 0.12.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. P.H. Chankowski, J.R. Ellis, M. Olechowski and S. Pokorski, Haggling over the fine tuning price of LEP, Nucl. Phys. B 544 (1999) 39 [hep-ph/9808275] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A. Birkedal, Z. Chacko and M.K. Gaillard, Little supersymmetry and the supersymmetric little hierarchy problem, JHEP 10 (2004) 036 [hep-ph/0404197] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. Z. Berezhiani, P.H. Chankowski, A. Falkowski and S. Pokorski, Double protection of the Higgs potential in a supersymmetric little Higgs model, Phys. Rev. Lett. 96 (2006) 031801 [hep-ph/0509311] [INSPIRE].

    Article  ADS  Google Scholar 

  4. A. Falkowski, S. Pokorski and M. Schmaltz, Twin SUSY, Phys. Rev. D 74 (2006) 035003 [hep-ph/0604066] [INSPIRE].

    ADS  Google Scholar 

  5. S. Chang, L.J. Hall and N. Weiner, A supersymmetric twin Higgs, Phys. Rev. D 75 (2007) 035009 [hep-ph/0604076] [INSPIRE].

    ADS  Google Scholar 

  6. N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs, JHEP 03 (2014) 140 [arXiv:1312.1341] [INSPIRE].

    Article  ADS  Google Scholar 

  7. V. Cardoso and S. Yoshida, Superradiant instabilities of rotating black branes and strings, JHEP 07 (2005) 009 [hep-th/0502206] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. G. Burdman, Z. Chacko, R. Harnik, L. de Lima and C.B. Verhaaren, Colorless top partners, a 125 GeV Higgs and the limits on naturalness, Phys. Rev. D 91 (2015) 055007 [arXiv:1411.3310] [INSPIRE].

    ADS  Google Scholar 

  9. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65] [hep-ph/0406088] [INSPIRE].

  11. J.D. Wells, PeV-scale supersymmetry, Phys. Rev. D 71 (2005) 015013 [hep-ph/0411041] [INSPIRE].

    ADS  Google Scholar 

  12. M.A. Ajaib, B. Dutta, T. Ghosh, I. Gogoladze and Q. Shafi, Neutralinos and sleptons at the LHC in light of muon (g − 2) μ , arXiv:1505.05896 [INSPIRE].

  13. M. Badziak, Z. Lalak, M. Lewicki, M. Olechowski and S. Pokorski, Upper bounds on sparticle masses from muon g − 2 and the Higgs mass and the complementarity of future colliders, JHEP 03 (2015) 003 [arXiv:1411.1450] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev. D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].

    ADS  Google Scholar 

  15. N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    Article  ADS  Google Scholar 

  16. C. Cheung, L.J. Hall, D. Pinner and J.T. Ruderman, Prospects and blind spots for neutralino dark matter, JHEP 05 (2013) 100 [arXiv:1211.4873] [INSPIRE].

    Article  ADS  Google Scholar 

  17. H. Baer, V. Barger and D. Mickelson, Direct and indirect detection of higgsino-like WIMPs: concluding the story of electroweak naturalness, Phys. Lett. B 726 (2013) 330 [arXiv:1303.3816] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Berggren et al., Tackling light higgsinos at the ILC, Eur. Phys. J. C 73 (2013) 2660 [arXiv:1307.3566] [INSPIRE].

    Article  ADS  Google Scholar 

  19. T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Han, S. Padhi and S. Su, Electroweakinos in the light of the Higgs boson, Phys. Rev. D 88 (2013) 115010 [arXiv:1309.5966] [INSPIRE].

    ADS  Google Scholar 

  21. P. Schwaller and J. Zurita, Compressed electroweakino spectra at the LHC, JHEP 03 (2014) 060 [arXiv:1312.7350] [INSPIRE].

    Article  ADS  Google Scholar 

  22. H. Baer, A. Mustafayev and X. Tata, Monojets and mono-photons from light higgsino pair production at LHC14, Phys. Rev. D 89 (2014) 055007 [arXiv:1401.1162] [INSPIRE].

    ADS  Google Scholar 

  23. H. Baer, A. Mustafayev and X. Tata, Monojet plus soft dilepton signal from light higgsino pair production at LHC14, Phys. Rev. D 90 (2014) 115007 [arXiv:1409.7058] [INSPIRE].

    ADS  Google Scholar 

  24. C. Han, A. Kobakhidze, N. Liu, A. Saavedra, L. Wu and J.M. Yang, Probing light higgsinos in natural SUSY from monojet signals at the LHC, JHEP 02 (2014) 049 [arXiv:1310.4274] [INSPIRE].

    Article  ADS  Google Scholar 

  25. Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate Higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].

    ADS  Google Scholar 

  26. M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].

    Article  ADS  Google Scholar 

  27. A. Anandakrishnan, L.M. Carpenter and S. Raby, Degenerate gaugino mass region and mono-boson collider signatures, Phys. Rev. D 90 (2014) 055004 [arXiv:1407.1833] [INSPIRE].

    ADS  Google Scholar 

  28. N. Nagata and S. Shirai, Higgsino dark matter in high-scale supersymmetry, JHEP 01 (2015) 029 [arXiv:1410.4549] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Bramante, A. Delgado, F. Elahi, A. Martin and B. Ostdiek, Catching sparks from well-forged neutralinos, Phys. Rev. D 90 (2014) 095008 [arXiv:1408.6530] [INSPIRE].

    ADS  Google Scholar 

  30. T.A.W. Martin and D. Morrissey, Electroweakino constraints from LHC data, JHEP 12 (2014) 168 [arXiv:1409.6322] [INSPIRE].

    Article  ADS  Google Scholar 

  31. B.S. Acharya, K. BoŻek, C. Pongkitivanichkul and K. Sakurai, Prospects for observing charginos and neutralinos at a 100 TeV proton-proton collider, JHEP 02 (2015) 181 [arXiv:1410.1532] [INSPIRE].

    Article  ADS  Google Scholar 

  32. S. Gori, S. Jung, L.-T. Wang and J.D. Wells, Prospects for electroweakino discovery at a 100 TeV hadron collider, JHEP 12 (2014) 108 [arXiv:1410.6287] [INSPIRE].

    Article  ADS  Google Scholar 

  33. J. Bramante et al., Relic neutralino surface at a 100 TeV collider, Phys. Rev. D 91 (2015) 054015 [arXiv:1412.4789] [INSPIRE].

    ADS  Google Scholar 

  34. G. Grilli di Cortona, Hunting electroweakinos at future hadron colliders and direct detection experiments, JHEP 05 (2015) 035 [arXiv:1412.5952] [INSPIRE].

    Article  Google Scholar 

  35. C. Han, D. Kim, S. Munir and M. Park, Accessing the core of naturalness, nearly degenerate higgsinos, at the LHC, JHEP 04 (2015) 132 [arXiv:1502.03734] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Berlin, T. Lin, M. Low and L.-T. Wang, Neutralinos in vector boson fusion at high energy colliders, Phys. Rev. D 91 (2015) 115002 [arXiv:1502.05044] [INSPIRE].

    ADS  Google Scholar 

  37. M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining dark sectors with monojets and dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].

    Article  ADS  Google Scholar 

  38. D. Barducci, A. Belyaev, A.K.M. Bharucha, W. Porod and V. Sanz, Uncovering natural supersymmetry via the interplay between the LHC and direct dark matter detection, JHEP 07 (2015) 066 [arXiv:1504.02472] [INSPIRE].

    Article  ADS  Google Scholar 

  39. K. Blum, Y. Cui and M. Kamionkowski, An ultimate target for dark matter searches, Phys. Rev. D 92 (2015) 023528 [arXiv:1412.3463] [INSPIRE].

    ADS  Google Scholar 

  40. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

  41. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

  42. U. Ellwanger, C. Hugonie and A.M. Teixeira, The next-to-minimal supersymmetric standard model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].

    Article  ADS  Google Scholar 

  44. R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  45. G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].

    Article  ADS  Google Scholar 

  46. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  48. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  50. E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs mass and unnatural supersymmetry, JHEP 09 (2014) 092 [arXiv:1407.4081] [INSPIRE].

    Article  ADS  Google Scholar 

  51. M. Ibe, S. Matsumoto and T.T. Yanagida, Pure gravity mediation with m 3/2 = 10–100 TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].

    ADS  Google Scholar 

  52. L.J. Hall, Y. Nomura and S. Shirai, Spread supersymmetry with Wino LSP: gluino and dark matter signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].

    Article  ADS  Google Scholar 

  53. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply unnatural supersymmetry, arXiv:1212.6971 [INSPIRE].

  54. K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. K. Choi, K.Y. Lee, Y. Shimizu, Y.G. Kim and K.I. Okumura, Neutralino dark matter in mirage mediation, JCAP 12 (2006) 017 [hep-ph/0609132] [INSPIRE].

    Article  ADS  Google Scholar 

  56. XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288] [INSPIRE].

  57. D.C. Malling et al., After LUX: the LZ program, arXiv:1110.0103 [INSPIRE].

  58. P. Cushman et al., Working group report: WIMP dark matter direct detection, arXiv:1310.8327 [INSPIRE].

  59. L. Calibbi, J.M. Lindert, T. Ota and Y. Takanishi, LHC tests of light neutralino dark matter without light sfermions, JHEP 11 (2014) 106 [arXiv:1410.5730] [INSPIRE].

    Article  ADS  Google Scholar 

  60. L. Calibbi, J.M. Lindert, T. Ota and Y. Takanishi, Cornering light neutralino dark matter at the LHC, JHEP 10 (2013) 132 [arXiv:1307.4119] [INSPIRE].

    Article  ADS  Google Scholar 

  61. B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  62. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  63. P. Grothaus, M. Fairbairn and J. Monroe, Directional dark matter detection beyond the neutrino bound, Phys. Rev. D 90 (2014) 055018 [arXiv:1406.5047] [INSPIRE].

    ADS  Google Scholar 

  64. IceCube collaboration, M.G. Aartsen et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110 (2013) 131302 [arXiv:1212.4097] [INSPIRE].

  65. H. Baer, A. Mustafayev, E.-K. Park and X. Tata, Target dark matter detection rates in models with a well-tempered neutralino, JCAP 01 (2007) 017 [hep-ph/0611387] [INSPIRE].

    Article  ADS  Google Scholar 

  66. J.L. Feng and D. Sanford, Heart of darkness: the significance of the zeptobarn scale for neutralino direct detection, JCAP 05 (2011) 018 [arXiv:1009.3934] [INSPIRE].

    Article  ADS  Google Scholar 

  67. P. Huang and C.E.M. Wagner, Blind spots for neutralino dark matter in the MSSM with an intermediate m A , Phys. Rev. D 90 (2014) 015018 [arXiv:1404.0392] [INSPIRE].

    ADS  Google Scholar 

  68. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  69. C.H. Chen, M. Drees and J.F. Gunion, A nonstandard string/SUSY scenario and its phenomenological implications, Phys. Rev. D 55 (1997) 330 [Erratum ibid. D 60 (1999) 039901] [hep-ph/9607421] [INSPIRE].

  70. A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].

    ADS  Google Scholar 

  71. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  72. M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].

    Article  ADS  Google Scholar 

  73. S.D. Thomas and J.D. Wells, Phenomenology of massive vectorlike doublet leptons, Phys. Rev. Lett. 81 (1998) 34 [hep-ph/9804359] [INSPIRE].

    Article  ADS  Google Scholar 

  74. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE].

    Article  ADS  Google Scholar 

  75. A. Hryczuk, R. Iengo and P. Ullio, Relic densities including Sommerfeld enhancements in the MSSM, JHEP 03 (2011) 069 [arXiv:1010.2172] [INSPIRE].

    Article  ADS  Google Scholar 

  76. A. Hryczuk, The Sommerfeld enhancement for scalar particles and application to sfermion co-annihilation regions, Phys. Lett. B 699 (2011) 271 [arXiv:1102.4295] [INSPIRE].

    Article  ADS  Google Scholar 

  77. P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke and E.A. Baltz, DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].

    Article  ADS  Google Scholar 

  78. M. Ibe, S. Matsumoto and R. Sato, Mass splitting between charged and neutral winos at two-loop level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].

    Article  ADS  Google Scholar 

  79. S. Jung, Resolving the existence of Higgsinos in the LHC inverse problem, JHEP 06 (2014) 111 [arXiv:1404.2691] [INSPIRE].

    Article  ADS  Google Scholar 

  80. CMS collaboration, Supersymmetry discovery potential in future LHC and HL-LHC running with the CMS detector, CMS-PAS-SUS-14-012 (2014).

  81. ATLAS collaboration, Search for charginos nearly mass degenerate with the lightest neutralino based on a disappearing-track signature in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 88 (2013) 112006 [arXiv:1310.3675] [INSPIRE].

  82. CMS collaboration, Search for disappearing tracks in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 01 (2015) 096 [arXiv:1411.6006] [INSPIRE].

  83. http://collider-reach.web.cern.ch/collider-reach/.

  84. O. Buchmueller et al., Collider interplay for supersymmetry, Higgs and dark matter, Eur. Phys. J. C 75 (2015) 469 [arXiv:1505.04702] [INSPIRE].

    Article  Google Scholar 

  85. K. Rolbiecki and K. Sakurai, Long-lived bino and wino in supersymmetry with heavy scalars and higgsinos, arXiv:1506.08799 [INSPIRE].

  86. K.J. de Vries et al., The pMSSM10 after LHC run 1, Eur. Phys. J. C 75 (2015) 422 [arXiv:1504.03260] [INSPIRE].

    Article  ADS  Google Scholar 

  87. E.A. Bagnaschi et al., Supersymmetric dark matter after LHC run 1, arXiv:1508.01173 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093, Warsaw, Poland

    M. Badziak, M. Olechowski & S. Pokorski

  2. Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN, 46556, U.S.A.

    A. Delgado

  3. Theory Division, Physics Department CERN, CH-1211, Geneva 23, Switzerland

    A. Delgado

  4. Department of Physics, King’s College London, London, WC2R 2LS, U.K.

    K. Sakurai

Authors
  1. M. Badziak
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Delgado
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. M. Olechowski
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. S. Pokorski
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. K. Sakurai
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to K. Sakurai.

Additional information

ArXiv ePrint: 1506.07177

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badziak, M., Delgado, A., Olechowski, M. et al. Detecting underabundant neutralinos. J. High Energ. Phys. 2015, 53 (2015). https://doi.org/10.1007/JHEP11(2015)053

Download citation

  • Received: 06 July 2015

  • Revised: 24 September 2015

  • Accepted: 07 October 2015

  • Published: 09 November 2015

  • DOI: https://doi.org/10.1007/JHEP11(2015)053

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersymmetry Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature